Featured Research

from universities, journals, and other organizations

Cave-dwelling fish examination finds possible genetic link to human disorders

Date:
April 3, 2014
Source:
University of Cincinnati
Summary:
Researchers have identified a genetic association with facial asymmetry in an ancient cavefish, a natural trait that may solve mysteries surrounding facial asymmetries in humans -- conditions such as cleft palate or hemifacial microsomia. "By understanding how genes are behaving differently on the right versus the left sides, we hope to discover why many craniofacial alterations are more severe or present on only one side of the face in humans," says Gross.

Cave-dwelling fish.
Credit: Image courtesy of University of Cincinnati

Researchers have identified a genetic association with facial asymmetry in an ancient cavefish, a natural trait that may solve mysteries surrounding facial asymmetries in humans -- conditions such as cleft palate or hemifacial microsomia. This exciting discovery by Joshua Gross, a University of Cincinnati assistant professor for the Department of Biological Sciences; and doctoral students Amanda Krutzler and Brian Carlson, is published in the research journal, Genetics.

The researchers are studying the craniofacial features of the eyeless, cave-dwelling fish, Astyanax mexicanus, which has lived in the pitch-black caves of the Sierra de El Abra region of Mexico for millions of years. They're comparing those features with closely related sighted surface-dwelling fish that are found in Mexico, Texas and New Mexico.

These cavefish have no eyes, although they are acutely sensitive to sound and vibration. Despite being eyeless, they have several similar bony features in their eye regions compared to their sighted, surface- dwelling counterparts. These similarities allowed the researchers to directly compare traits in the surface-dwelling fish with the cavefish. The cavefish, however, appear drastically different since they are albino and nearly translucent, compared with the darker pigmented surface-dwelling fish.

The researchers are screening the genomes of every individual fish from a hybrid pedigree housed in their lab -- looking for genes that may lead to variations in eye size or pigmentation. In the cavefish, they discovered genetic markers on two separate chromosomes that are associated with extensive bone fragmentation on the right side of the skull. Although bone fragmentation also occurs on the left side of the skull, no genetic associations were detected when scoring on the left side of the cranium. The sighted surface-dwelling fish never demonstrated any of these craniofacial abnormalities.

"By understanding how genes are behaving differently on the right versus the left sides, we hope to discover why many craniofacial alterations are more severe or present on only one side of the face in humans," says Gross.

Researchers are now narrowing in on the precise genes associated with these cranial abnormalities, with indications that two genes previously shown to be associated with cleft palate in humans, bone morphogenetic protein number four (BMP4) and transforming growth factor beta family member 3 (TGFB3), may similarly be involved in natural forms of bone asymmetry.

Previous research discovered that the gene that causes red hair and pale skin in humans was the same gene that caused the albino-like cavefish to have less pigmentation than the surface-dwelling species.

Funding for the research was supported by a federal grant from the National Institute of Dental and Craniofacial Research, National Institutes of Health.

Building a Family Pedigree

The researchers bred the cave fish with the surface-dwelling fish, and then intercrossed the hybrid offspring. Some members of this family pedigree resembled the albino qualities of the cave-dwelling fish but had a perfectly well-developed eye. Others demonstrated the dark pigmentation qualities of the surface-dwelling parent, but had a very small eye.

"We can make progress towards understanding the genetic origin of several analogous human disorders by expanding the repertoire of model systems represented by lab mice, zebrafish and so forth," explains Gross. "Many techniques and technologies have been developed in these powerful model systems, however they're extremely inbred. As a result, an inbred model system is not going to enable us to understand how and why craniofacial abnormalities evolve in nature. We can use the blind Pachσn cave-dwelling fish to inform unresolved questions, such as how and why asymmetric craniofacial malformations occur in humans."

"Additional research, utilizing an increasing number of emerging cave-dwelling models, offers the exciting prospect of clarifying longstanding problems in contemporary evolutionary and vertebrate biology," says Gross.

About the Video: High-Tech Imagery Used to Support Research

The UC researchers are using cutting-edge technology as they build a high-resolution, three-dimensional reconstructions of hybrids of the surface-dwelling and cave-dwelling fish, Astyanax mexicanus. The researchers turned to the Imaging Resource Center at Cincinnati Children's Hospital Medical Center to perform an imaging technique called micro-computed tomography, or micro-CT, on more than 200 related fish. The technology allowed the researchers to capture more than 1,000 X-ray images for each fish, which they combined and rendered into a high-resolution, 3-D skull, using the Amira software program.

Doctoral student and researcher Amanda Krutzler says the interactive program allows the researchers to rotate the fish skull in 3-D and take precise measurements for any traits of interest. In addition, micro-CT allows the researchers to visualize soft tissues, such as the brain or cardiovascular systems. "These scans will generate a massive amount of data for our lab, which will provide projects for undergraduate students and graduate students like me," says Krutzler. The National Institute of Dental and Craniofacial Research grant provided the funding for the software.

In addition, doctoral student Brian Carlson used Circos software to visualize the connections between the cavefish genome and the zebrafish genome. "The more markers shared between a given cavefish linkage group and zebrafish chromosome, the thicker the ribbon that connects them. These representations are helpful in highlighting similarities between the cavefish and zebrafish genomes and may ultimately aid in identifying the genetic loci underlying the traits we examine by indicating which portions of the zebrafish genome may harbor genes that affect these traits," says Carlson.


Story Source:

The above story is based on materials provided by University of Cincinnati. The original article was written by Dawn Fuller. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. B. Gross, A. J. Krutzler, B. M. Carlson. Complex Craniofacial Changes in Blind Cave-Dwelling Fish Are Mediated by Genetically Symmetric and Asymmetric Loci. Genetics, 2014; DOI: 10.1534/genetics.114.161661

Cite This Page:

University of Cincinnati. "Cave-dwelling fish examination finds possible genetic link to human disorders." ScienceDaily. ScienceDaily, 3 April 2014. <www.sciencedaily.com/releases/2014/04/140403132333.htm>.
University of Cincinnati. (2014, April 3). Cave-dwelling fish examination finds possible genetic link to human disorders. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2014/04/140403132333.htm
University of Cincinnati. "Cave-dwelling fish examination finds possible genetic link to human disorders." ScienceDaily. www.sciencedaily.com/releases/2014/04/140403132333.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) — Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) — Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) — Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins