Featured Research

from universities, journals, and other organizations

Friedreich's ataxia: Effective gene therapy in animal model

Date:
April 6, 2014
Source:
INSERM (Institut national de la santé et de la recherche médicale)
Summary:
The efficacy of gene therapy for treating the heart disease associated with Friedreich's ataxia, a rare hereditary neuro-degenerative disorder, has been demonstrated in a mouse model. Friedreich's ataxia is a severe, rare hereditary disorder which combines progressive neuro-degeneration, impaired heart function and an increased risk of diabetes. The condition affects one in every 50,000 birth.

The illustrations show a measurement of the activity of a mitochondrial protein (in blue) essential for cellular energy production, which is impaired when frataxin is absent (no staining in the untreated heart). Using gene therapy expressing frataxin, the activity of this essential protein can be corrected across the heart’s entire surface.
Credit: © Inserm / H. Puccio

Friedreich's ataxia is a severe, rare hereditary disorder which combines progressive neuro-degeneration, impaired heart function and an increased risk of diabetes. The condition affects one in every 50,000 birth. There is currently no effective treatment for this disease. In most cases, Friedreich's ataxia starts in adolescence with impaired balance and coordination (ataxia) of voluntary arm and leg movements, confining the majority of patients to a wheelchair after 10-20 years' progression. However, complications affecting the heart are the major cause of death in 60% of patients, most often before the 35 years of age.

Related Articles


The disease is caused by a common mutation in the FXN gene which leads to a dramatic decrease in the production of the protein named 'frataxin'. The reduced frataxin level disturbs the activity of mitochondria. These organelles are essential to cells and play a fundamental role in energy production. The nerve tissue (cerebellum, spinal cord etc.) and heart tissue are particularly vulnerable to this shortage of energy, which can lead to fatal heart failure.

The teams led by Hélène Puccio, director of research at Inserm and Patrick Aubourg have developed a therapeutic approach based on the use of an adeno-associated virus (AAV) (1), which is known to efficiently target and express a therapeutic gene in heart cells. The virus was modified to make it harmless but nevertheless capable of introducing a normal copy of the FXN gene in the heart cells, thus leading to the expression of frataxin.

Hélène Puccio's team tested the efficacy of this treatment in a mouse model that faithfully reproduces the heart symptoms of patients suffering from Friedreich's ataxia. The results show that a single intravenous injection of AAVrh10 expressing frataxin is not only capable of preventing the development of heart disease in animals before the appearance of symptoms, but also, more impressively, of fully and rapidly curing the hearts of animals at an advanced stage of heart disease. After three weeks of treatment, the heart become fully functional again; mitochondrial function and the appearance of heart tissue being very similar to those of healthy mice.

"This is the first time that gene therapy has prompted full, lasting remission of heart disease so quickly in an animal model." explains Hélène Puccio. As the central nervous system is also a target of AAV vectors, Hélène Puccio and Patrick Aubourg's teams are investigating whether a similar approach using gene therapy could be as effective for the spinal cord and cerebellum as it is for the heart. Based on these promising results, work has begun on the necessary developments to propose to patients suffering from Friedreich's ataxia and presenting a progressive cardiomyopathy a treatment by gene therapy. To this end, three of the paper's authors have set up AAVLife, a French company specializing in gene therapy for rare diseases, to translate to clinic these important laboratory findings. A patent application has been submitted by Inserm Transfert for this gene therapy approach.


Story Source:

The above story is based on materials provided by INSERM (Institut national de la santé et de la recherche médicale). Note: Materials may be edited for content and length.


Journal Reference:

  1. Morgane Perdomini, Brahim Belbellaa, Laurent Monassier, Laurence Reutenauer, Nadia Messaddeq, Nathalie Cartier, Ronald G Crystal, Patrick Aubourg, Hélène Puccio. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nature Medicine, 2014; DOI: 10.1038/nm.3510

Cite This Page:

INSERM (Institut national de la santé et de la recherche médicale). "Friedreich's ataxia: Effective gene therapy in animal model." ScienceDaily. ScienceDaily, 6 April 2014. <www.sciencedaily.com/releases/2014/04/140406162426.htm>.
INSERM (Institut national de la santé et de la recherche médicale). (2014, April 6). Friedreich's ataxia: Effective gene therapy in animal model. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2014/04/140406162426.htm
INSERM (Institut national de la santé et de la recherche médicale). "Friedreich's ataxia: Effective gene therapy in animal model." ScienceDaily. www.sciencedaily.com/releases/2014/04/140406162426.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) — A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com
In Rural Sierra Leone the Red Cross Battles Ebola

In Rural Sierra Leone the Red Cross Battles Ebola

AFP (Dec. 17, 2014) — The Red Cross battles the Ebola virus in rural Sierra Leone and its fallout. In one treatment centre in the city of Kenema, the Red Cross also runs a kindergarten. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins