Featured Research

from universities, journals, and other organizations

Friction harnessed by proteins helps organize cell division

Date:
April 16, 2014
Source:
Rockefeller University
Summary:
A football-shaped structure, known as the mitotic spindle, makes cell division possible for many living things. This piece of cellular architecture, responsible for dividing up genetic material, is in constant flux. The filaments that form it grow and shrink, while motor-like molecules burn energy pushing them about. To ensure the complex process proceeds in an orderly fashion, molecular fasteners pin the filaments together in certain places, and new research helps explain how they do it.

Path of least resistance. Motion of the filaments of the mitotic spindle (red) positions fastener proteins (green) as a cell prepares to divide. One of these proteins, NuMA (top), encounters less resistance as it heads toward the ends of the spindle, while another, PRC1 (bottom), encounters the same amount in either direction, and so remains in the middle.
Credit: Image courtesy of Rockefeller University

A football-shaped structure, known as the mitotic spindle, makes cell division possible for many living things. This piece of cellular architecture, responsible for dividing up genetic material, is in constant flux. The filaments that form it grow and shrink, while motor-like molecules burn energy pushing them about. To ensure the complex process proceeds in an orderly fashion, molecular fasteners pin the filaments together in certain places, and new research in Tarun Kapoor's Laboratory of Chemistry and Cell Biology helps explain how they do it.

Related Articles


"These 'fastener' proteins do not consume energy, yet they somehow maintain their positions on the filaments, known as microtubules, in spite of all the activity going on," says Scott Forth, a postdoc in the lab who led the research. "We found these proteins can actually harness this motion to help them do their jobs."

In research detailed last week in Cell, the Rockefeller team discovered some of these fastener proteins, known as non-motor microtubule associated proteins, or MAPs, experience different degrees of friction depending on the direction in which they are being moved along a microtubule. As a result, the MAPs can be shuffled into position clustered at the points of the football, for example, without directly consuming any energy. By contrast, other proteins involved in this process, known as motor proteins, consume chemical energy to move the microtubules around.

To figure out how MAPs respond to the movement of the microtubules, the researchers measured the friction generated while each of three MAPs were in contact with moving microtubules. For two of the three, they found an asymmetry: Motion in one direction generated much less friction than motion in the other direction. For example, the NuMA protein experienced less friction when being moved toward the minus end of the microtubule than when being moved toward the plus end, while the EB1 protein showed the opposite, a preference for the plus end.

Forth compares this asymmetry to a Chinese finger trap. When two fingers inserted into both ends of the trap's tube are pulled outward, away from one another, the trap tightens, but when both fingers are pushed in together, the trap loosens. "This asymmetry in force is also true for these MAPs. If they are dragged one way along the microtubule it is hard to do it, while if they're dragged the other way it is easy to do it," he says.

Experiments also revealed that as pairs of microtubules were jiggled, these proteins shuffled along them in the direction of least resistance, toward either the plus or minus end of the microtubules. This discovery helps explain how NuMA, for example, stays clustered at the minus ends of the microtubules, where it holds them together and forms a focal point for the microtubules.

Meanwhile, one of the MAPs, PRC1, showed no asymmetry in friction, a trait that likely keeps it well distributed, rather than clustered, Forth says.

"Our hypothesis is that maybe this sort of intrinsic mechanical property -- the friction these proteins experience -- helps them to get where they need to be, as well as maintain the spindle's organization and mechanical integrity during cell division," Forth says.

"Friction plays an important role in our daily lives as we get from one place to another," says Kapoor, who is the Pels Family Professor. "Similar principles seem to be important for proteins in our cells. In addition to microtubules, there are many biological polymers that are actively moving in cells; for example, DNA while it is being replicated or repaired. It is likely that asymmetries in the friction between proteins and these biopolymers will prove to be important in guiding them to the correct cellular locations."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Scott Forth, Kuo-Chiang Hsia, Yuta Shimamoto, TarunM. Kapoor. Asymmetric Friction of Nonmotor MAPs Can Lead to Their Directional Motion in Active Microtubule Networks. Cell, 2014; 157 (2): 420 DOI: 10.1016/j.cell.2014.02.018

Cite This Page:

Rockefeller University. "Friction harnessed by proteins helps organize cell division." ScienceDaily. ScienceDaily, 16 April 2014. <www.sciencedaily.com/releases/2014/04/140416190907.htm>.
Rockefeller University. (2014, April 16). Friction harnessed by proteins helps organize cell division. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/04/140416190907.htm
Rockefeller University. "Friction harnessed by proteins helps organize cell division." ScienceDaily. www.sciencedaily.com/releases/2014/04/140416190907.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins