Featured Research

from universities, journals, and other organizations

Computational method dramatically speeds up estimates of gene expression

Date:
April 20, 2014
Source:
Carnegie Mellon University
Summary:
With gene expression analysis growing in importance for both basic researchers and medical practitioners, researchers have developed a new computational method that dramatically speeds up estimates of gene activity from RNA sequencing data. With the new method, dubbed Sailfish after the famously speedy fish, estimates of gene expression that previously took many hours can be completed in a few minutes, with accuracy that equals or exceeds previous methods.

With gene expression analysis growing in importance for both basic researchers and medical practitioners, researchers at Carnegie Mellon University and the University of Maryland have developed a new computational method that dramatically speeds up estimates of gene activity from RNA sequencing (RNA-seq) data.

With the new method, dubbed Sailfish after the famously speedy fish, estimates of gene expression that previously took many hours can be completed in a few minutes, with accuracy that equals or exceeds previous methods. The researchers' report on their new method is being published online April 20 by the journal Nature Biotechnology.

Gigantic repositories of RNA-seq data now exist, making it possible to re-analyze experiments in light of new discoveries. "But 15 hours a pop really starts to add up, particularly if you want to look at 100 experiments," said Carl Kingsford, an associate professor in CMU's Lane Center for Computational Biology. "With Sailfish, we can give researchers everything they got from previous methods, but faster."

Though an organism's genetic makeup is static, the activity of individual genes varies greatly over time, making gene expression an important factor in understanding how organisms work and what occurs during disease processes. Gene activity can't be measured directly, but can be inferred by monitoring RNA, the molecules that carry information from the genes for producing proteins and other cellular activities. RNA-seq is a leading method for producing these snapshots of gene expression; in genomic medicine, it has proven particularly useful in analyzing certain cancers.

The RNA-seq process results in short sequences of RNA, called "reads." In previous methods, the RNA molecules from which they originated could be identified and measured only by painstakingly mapping these reads to their original positions in the larger molecules.

But Kingsford, working with Rob Patro, a post-doctoral researcher in the Lane Center, and Stephen M. Mount, an associate professor in Maryland's Department of Cell Biology and Molecular Genetics and its Center for Bioinformatics and Computational Biology, found that the time-consuming mapping step could be eliminated. Instead, they found they could allocate parts of the reads to different types of RNA molecules, much as if each read acted as several votes for one molecule or another.

Without the mapping step, Sailfish can complete its RNA analysis 20-30 times faster than previous methods.

This numerical approach might not be as intuitive as a map to a biologist, but it makes perfect sense to a computer scientist, Kingsford said. Moreover, the Sailfish method is more robust -- better able to tolerate errors in the reads or differences between individuals' genomes. These errors can prevent some reads from being mapped, he explained, but the Sailfish method can make use of all the RNA read "votes," which improves the method's accuracy.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rob Patro, Stephen M Mount, Carl Kingsford. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nature Biotechnology, 2014; DOI: 10.1038/nbt.2862

Cite This Page:

Carnegie Mellon University. "Computational method dramatically speeds up estimates of gene expression." ScienceDaily. ScienceDaily, 20 April 2014. <www.sciencedaily.com/releases/2014/04/140420131806.htm>.
Carnegie Mellon University. (2014, April 20). Computational method dramatically speeds up estimates of gene expression. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/04/140420131806.htm
Carnegie Mellon University. "Computational method dramatically speeds up estimates of gene expression." ScienceDaily. www.sciencedaily.com/releases/2014/04/140420131806.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins