Featured Research

from universities, journals, and other organizations

Increasing sugar concentration in tomato juice found by researchers

Date:
April 28, 2014
Source:
American Society for Horticultural Science
Summary:
A study determined whether a prototypic method of wire coiling increases the sugar concentration of tomato fruit. Researchers tested the effects of the method on the growth of unripe tomato fruit, shoots, and roots. The basal wire coiling treatment increased the sugar and soluble solids concentrations of tomato fruit juice. The researchers recommended further studies before the technique can be adopted for practical use.

To increase the sugar concentration and resulting marketability of tomato juice, growers have traditionally used techniques such as subjecting plants to salt and water stresses. In a new study published in HortTechnology, Ken Takahata and Hiroyuki Miura from Tokyo University of Agriculture reported on a prototypic method known as "basal wire coiling" that shows potential as a simple and effective method for increasing the sugar concentration in tomato fruit juice.

"We investigated whether coiling wire around the lower part of the plant stems to reduce the capacity of xylem to transport water to the shoot would result in low shoot moisture conditions and increase the sugar concentration of fruit like salt and water stresses," the authors said. They noted that basal wire coiling is less complex than other treatments, such as subjecting tomato plants to salt or water stress, which can require special equipment and techniques.

Takahata and Miura's study involved coiling bonsai wire around the stems of tomato seedlings between the cotyledon node and the first leaf node. "Eleven days after treatment, the stem diameters immediately above the wire coils were markedly greater in treated plants compared with the corresponding stem regions of control plants," they said. The stems of treated plants were less elongated and developed fewer nodes at 39 and 51 days after treatment than did the control plants.

Several months after the application of the treatment, marketable fruit harvested from the first to third trusses of the treated plants had average weights that were 49% to 89% of the weights of fruit from control plants. The juice of fruit from the first to third trusses in the treated plants had soluble solids concentrations of 116% to 120%, sucrose concentrations of 263% to 483%, and fructose and glucose concentrations of 135% to 155%, compared with juice from corresponding control fruit. At 112 days after treatment, the shoots and roots of treated plants had weights that were 58% and 32% of those of control plants, respectively.

"Since basal wire coiling in this experiment markedly suppressed root growth, presumably by impeding photosynthate translocation through the phloem to the roots, we assume that water absorption was also decreased by this treatment," Takahata and Miura wrote. "Furthermore, impeding water transport through the xylem to the upper parts of the plant by this treatment should accelerate a reduction in the moisture content of the shoot."

The results suggested that the decrease in moisture content, minor decrease in photosynthate production, activated sugar translocation, and reduced competition for photosynthates resulting from the basal wire coiling technique could increase sugar concentrations in tomato fruit juice.

Takahata and Miura recommended further studies to determine the practical application of basal wire coiling for tomato production; specifically to identify the appropriate location and time for coiling plants with wire, the optimum width of the wire coil, optimal methods for nutrient and water management, and to calculate the economic impacts for producers and consumers.

The article's summary can be found online at: http://horttech.ashspublications.org/content/24/1/76.abstract#fn-2


Story Source:

The above story is based on materials provided by American Society for Horticultural Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ken Takahata And Hiroyuki Miura. Increasing the Sugar Concentration in Tomato Fruit Juice by Coiling Wire Around Plant Stems. HortTechnology, February 2014

Cite This Page:

American Society for Horticultural Science. "Increasing sugar concentration in tomato juice found by researchers." ScienceDaily. ScienceDaily, 28 April 2014. <www.sciencedaily.com/releases/2014/04/140428121249.htm>.
American Society for Horticultural Science. (2014, April 28). Increasing sugar concentration in tomato juice found by researchers. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/04/140428121249.htm
American Society for Horticultural Science. "Increasing sugar concentration in tomato juice found by researchers." ScienceDaily. www.sciencedaily.com/releases/2014/04/140428121249.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) — An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) — In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins