Featured Research

from universities, journals, and other organizations

Massive cost savings in high-tech pathogen-identification method

Date:
May 20, 2014
Source:
University of North Carolina School of Medicine
Summary:
Using a new method for identifying bacteria and fungi in patient specimens led to a 92 percent cost reduction in the reagents needed to run clinical microbiology tests. "I don't like to use the word 'revolutionize,' but this technology has revolutionized our lab. We can diagnose infection more efficiently and treat patients much quicker, both of which help decrease health care costs," the lead investigator said.

Researchers at UNC Health Care have found that using a new method for identifying bacteria and fungi in patient specimens led to a 92 percent cost reduction in the reagents needed to run clinical microbiology tests. During the year-long study, the new technology -- called MALDI-TOF MS -- was also found to take much less time. In most cases, lab technologists identified a pathogen in about an hour; test results from conventional molecular methods take at least a day and often longer.

Peter Gilligan, PhD, Director of the Clinical Microbiology-Immunology Laboratories at UNC Hospitals in Chapel Hill, said, "I don't like to use the word 'revolutionize,' but this technology has revolutionized our lab. We can diagnose infection more efficiently and treat patients much quicker, both of which help decrease health care costs."

Gilligan, a professor of pathology and laboratory medicine in the UNC School of Medicine, and Clinical Microbiology Fellow Anthony Tran, DrPH, presented their findings at the 2014 General Meeting of the American Society for Microbiology in Boston May 18.

From April 1, 2013 to March 31, 2014, Gilligan and Tran led a cost-analysis study. The lab used the MALDI-TOF MS to identify specific microorganisms from 21,930 samples from patients at UNC Hospitals. Specimens consisted of enteric pathogens, enterococci, gram negative non-glucose fermenters, staphylococci, streptococci, and yeast.

Traditionally, clinical microbiologists use various reagents that require different amounts of time to determine what pathogens are contained within a given sample. Often, doctors and patients would need to wait between 24 and 48 hours to get a result from Gilligan's lab. The cost of identifying 21,930 organisms would have cost $84,491 in reagents alone.

With MALDI-TOF, Gilligan's team has results often within an hour, depending on the type of organism. And the cost of materials was $6,469 for one year. That's 92 percent less than the cost of conventional reagents.

The cost savings, when calculated to include time spent by lab technologists, totaled $118,260 for one year. That's a savings of 82 percent.

Tran said, "We estimate that because of the reduced cost of reagents and time saved for lab technologists, the upfront cost of the MALDI-TOF instrument will be offset in less than three years from purchase."

MALDI-TOF MS stands for Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry. It analyzes proteins from incubated specimens and identifies the specimens by comparing them to known microorganisms in a database. The technology came into clinical microbiology use within the past five years. Gilligan's lab was one of the first in the country to acquire MALDI-TOF MS in 2012 and was the first lab in North Carolina to use it.

Two companies -- Bruker Corporation and bioM้rieux, Inc. -- have developed slightly different versions of the technology. Spearheaded by Melissa Miller, PhD, associate director of the Clinical Microbiology-Immunology Laboratories, Gilligan's team tested both company's instruments prior to Tran and Gilligan's recent study and found that each provided results as good or better than conventional methods. UNC Hospitals purchased the MALDI-TOF MS in 2012 for approximately $250,000 from bioM้rieux due in part to the company's location in north Durham and UNC Health Care's previous collaborations with the company.

"For a microbiology lab, that's a lot of money," Gilligan said. "It was a big commitment, which told us that the hospital had faith we could ultimately save money and most importantly improve patient care."

Gilligan added, "I can't stress enough that the savings are really in efficiency. Our lab's workload is increasing all the time, but we're not hiring new technologists. So somehow we had to become more efficient and smarter. This technology allows us to do that. Getting results sooner saves everyone time. If a doctor knows sooner what's going on with a patient, then the doctor can narrow the therapeutic options faster than before."

The new technology has also helped Gilligan's lab identify some pathogens that lab technologists would not have typically considered the cause of infection. One of them is the bacterium Corynebacterium kroppenstedtii, which has now been implicated in beast abscesses.

"This is a big deal," Gilligan said. "Doctors would see patients with chronic infections and no one knew what caused them. Now we know and we can treat patients much more effectively than before."


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina School of Medicine. "Massive cost savings in high-tech pathogen-identification method." ScienceDaily. ScienceDaily, 20 May 2014. <www.sciencedaily.com/releases/2014/05/140520122950.htm>.
University of North Carolina School of Medicine. (2014, May 20). Massive cost savings in high-tech pathogen-identification method. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/05/140520122950.htm
University of North Carolina School of Medicine. "Massive cost savings in high-tech pathogen-identification method." ScienceDaily. www.sciencedaily.com/releases/2014/05/140520122950.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins