Featured Research

from universities, journals, and other organizations

Pulsed electrical fields destroy antibiotic-resistant bacteria infecting burn injuries

Date:
May 21, 2014
Source:
Massachusetts General Hospital
Summary:
Application of a technology currently used to disinfect food products may help to get around one of the most challenging problems in medicine today, the proliferation of bacteria resistant to antibiotics and other antimicrobial drugs. About 500,000 individuals are treated for burn injuries in the U.S. each year. Standard burn treatment involves removal of burned tissue, skin grafts, and the application of antiseptic and antimicrobial dressings to prevent and treat infection. The growing prevalence of antibiotic-resistant bacteria is behind the frequent failure of antibiotic treatment, necessitating novel approaches to eliminate infecting pathogens.

Application of electrical fields (left) is believed to destroy bacteria by inducing the formation of large holes (right) in bacterial membranes.
Credit: Image by Alexander Golberg, PhD, MGH Center for Engineering in Medicine

Application of a technology currently used to disinfect food products may help to get around one of the most challenging problems in medicine today, the proliferation of bacteria resistant to antibiotics and other antimicrobial drugs. In a paper appearing in the June issue of the journal Technology and already released online, investigators from the Massachusetts General Hospital (MGH) Center for Engineering in Medicine describe how the use of microsecond-pulsed, high-voltage non-thermal electric fields successfully killed resistant bacteria infecting experimentally induced burns in mice, reducing bacterial levels up to 10,000-fold.

"Pulsed electrical field technology has the advantages of targeting numerous bacterial species and penetrating the full thickness of a wound," says Alexander Golberg, PhD, of the MGH Center for Engineering in Medicine (MGH-CEM), first author of the paper. "This could lead to a completely new means of burn wound disinfection without using antibiotics, which can increase bacterial resistance."

About 500,000 individuals are treated for burn injuries in the U.S. each year. Standard burn treatment involves removal of burned tissue, skin grafts, and the application of antiseptic and antimicrobial dressings to prevent and treat infection. The growing prevalence of antibiotic-resistant bacteria -- including strains of Acinetobacter baumannii and Staphylococcus aureus -- is behind the frequent failure of antibiotic treatment, necessitating novel approaches to eliminate infecting pathogens.

Pulsed electrical fields (PEFs) have been used for decades to preserve food by destroying bacteria, presumably by causing the formation of large pores in the bacterial membrane; and more recently PEF's have been used to treat solid tumors. Members of the MGH research team, led by Martin Yarmush, MD, PhD, director of the MGH-CEM, have previously used PEF to study scarless skin regeneration and are currently investigating use of the technology to improve wound healing. Theorizing that the procedure could improve management of wound infection, the researchers designed the current study.

The investigators applied a multidrug resistant strain of A. baumannii to small third-degree burns that had been made on the backs of anesthetized mice. After 40 minutes, during which imaging of the fluorescent bacteria confirmed the established infection, the burned area was treated with an electrical field generated by placing the damaged skin between two electrodes. Each animal received two 40-pulse treatments five minutes apart, one group receiving 250 V/mm pulses and another receiving 500 V/mm pulses.

Images taken right after each treatment showed pronounced drops in bacterial levels. While images taken three hours later showed some bacterial regrowth, the overall results confirmed a persistent reduction in bacterial levels, ranging from a 500-fold reduction after 80 pulses at 250 V/mm volts to a more than 10,000-fold reduction after 80 pulses at 500 V/mm. The researchers also found that increasing the number of pulses per treatment had a greater effect on bacterial reduction than did increasing the strength of the electric field. Additional investigation is needed to confirm the safety of the tested voltage levels and the treatment's effectiveness against deep infections and other species of resistant bacteria.

"Currently available technologies have not been able to solve the problem of multidrug-resistant burn wound infections, and lasers are unable to treat infections deep within a wound because of the scattering and absorption of light," says Yarmush, who is senior author of the Technology paper. "Pulsed electric fields are a previously unexplored technique that has the potential to provide a chemical-free way of disinfecting burns and other wound infections."


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "Pulsed electrical fields destroy antibiotic-resistant bacteria infecting burn injuries." ScienceDaily. ScienceDaily, 21 May 2014. <www.sciencedaily.com/releases/2014/05/140521180059.htm>.
Massachusetts General Hospital. (2014, May 21). Pulsed electrical fields destroy antibiotic-resistant bacteria infecting burn injuries. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/05/140521180059.htm
Massachusetts General Hospital. "Pulsed electrical fields destroy antibiotic-resistant bacteria infecting burn injuries." ScienceDaily. www.sciencedaily.com/releases/2014/05/140521180059.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins