Featured Research

from universities, journals, and other organizations

Quest for long-lasting blood: Scientists developing one-size-fits-all artifical blood

Date:
June 9, 2014
Source:
University of Essex
Summary:
Scientists are hoping to develop a one-size-fits-all, third generation artificial blood substitute. Every day thousands of people around the world have their lives saved or improved thanks to someone giving blood. But imagine how many more lives could be saved if a long-lasting blood substitute could be found, which could easily be stored at room temperature and available to all patients, regardless of their blood type.

A team of scientists at the University of Essex are hoping to develop a one-size-fits-all, third generation artificial blood substitute.

Every day thousands of people around the world have their lives saved or improved thanks to someone giving blood.

But imagine how many more lives could be saved if a long-lasting blood substitute could be found, which could easily be stored at room temperature and available to all patients, regardless of their blood type.

This is the challenge a team of scientists at the University of Essex are hoping to overcome with their Haem02 project to develop a one-size-fits-all, third generation artificial blood substitute.

Led by Professor Chris Cooper, the research team are developing an artificial blood substitute that is a safe, long-lasting, virus-free alternative to current blood transfusions available to all countries and immediately accessible at the site of natural disasters.

Haemoglobin is the key protein in red blood cells that carries oxygen around our bodies. The Haem02 team aim to create an artificial haemoglobin-based oxygen carrier (HBOC) that could be used as a substitute for blood lost in surgery or trauma.

However, attempts so far to make a safe and effective HBOC have proved problematic as outside the protective environment of the red cell, haemoglobin can be toxic. The beauty of the product being engineered at Essex is that it is detoxified by the body's own defences.

As Professor Cooper, a biochemist and blood substitute expert, explained, the implications of manufacturing a product with a shelf life of up to two years were huge.

"It means we could overcome some of the inherent problems with transfusions as there would be no need for blood group typing and a longer shelf life means you are able to stockpile the supplies necessary for major disasters. It also offers the opportunity for routine transfusion support in ambulances or at remote inaccessible locations," he explained.

The quest to create artificial blood is big business, with the past 25 years seeing up to 2 billion invested globally on research into a usable alternative and many major US companies falling by the wayside in the hunt for a substitute.

After winning over 1.5 million of funding from the Medical Research Council (MRC)'s Biomedical Catalyst funding programme and the Biotechnology and Biological Sciences Research Council (BBSRC)'s Super Follow On Fund, the team from Essex are a step further towards the commercialisation of a viable artificial substitute. Their engineered haemoglobin product has already been granted patents in the US and Australia and has a patent pending in the EU.

"This is an exciting time for artificial blood research in Britain," explained Professor Cooper. "This funding allows our team to take to first step on the road to bridging the gap between top class research and the commercialisation of a product."

Currently over 85 million units of donated blood are given to people worldwide for use in hospitals. However, there are growing concerns about its use in routine operations. With the number of potential and active blood donors decreasing worldwide, the challenge is to have enough blood in the right place at the right time and be assured of its quality, purity and efficacy.

Some artificial blood products are licensed for use in South Africa and Russia but have failed to get a licence in the UK or in the United States.

For more details about Haem02 please visit: www.haemO2.com.


Story Source:

The above story is based on materials provided by University of Essex. Note: Materials may be edited for content and length.


Cite This Page:

University of Essex. "Quest for long-lasting blood: Scientists developing one-size-fits-all artifical blood." ScienceDaily. ScienceDaily, 9 June 2014. <www.sciencedaily.com/releases/2014/06/140609093826.htm>.
University of Essex. (2014, June 9). Quest for long-lasting blood: Scientists developing one-size-fits-all artifical blood. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/06/140609093826.htm
University of Essex. "Quest for long-lasting blood: Scientists developing one-size-fits-all artifical blood." ScienceDaily. www.sciencedaily.com/releases/2014/06/140609093826.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins