Featured Research

from universities, journals, and other organizations

Water found to provide blueprints for root architecture

Date:
June 9, 2014
Source:
Carnegie Institution
Summary:
Soil is a microscopic maze of nooks and crannies that hosts a wide array of life. Plants explore this environment by developing a complex branched network of roots that tap into scarce resources such as water and nutrients. How roots sense which regions of soil contain water and what effect this moisture has on the architecture of the root system has been unclear until now.

A cross section of a rice root showing the development of a root branch towards water.
Credit: Pooja Aggarwal

Soil is a microscopic maze of nooks and crannies that hosts a wide array of life. Plants explore this environment by developing a complex branched network of roots that tap into scarce resources such as water and nutrients. How roots sense which regions of soil contain water and what effect this moisture has on the architecture of the root system has been unclear.

New research from a team led by Carnegie's José Dinneny focuses on how physical properties of a root's local environment control root branching and through which developmental pathways these signals act. Their findings, published by Proceedings of the National Academy of Sciences, describe a novel process called hydropatterning that allows plants to optimize root branching for water uptake.

Plant roots form a branching network like that above ground, with lateral roots growing out from a main axis. Because water is not uniformly distributed in soil, the structure of the root system networks needs to be regulated in ways that optimizes soil exploration, while limiting growth into water-poor regions.

Dinneny and his team developed methods for growing roots in environments in whiche the distributions of water and air around the root were highly controlled. By analyzing the position where new branches formed, the researchers found that plants tend to place these root branches in close proximity to where water exists, while tiny root hairs appear in areas exposed to air.

Their work revealed that opposite sides of the same single root are optimized to take advantage of air or water resources when the environment is varied. Working with colleagues Malcolm Bennett and Sacha Mooney at the University of Nottingham, micro-scale X-ray tomography was used to build 3-D models of roots growing in soil and revealed that similar processes occur in this more-natural environment.

"We had completely underestimated the spatial acuity of the patterning system in the root. It was fascinating to discover that roots can respond to environmental conditions that vary over distances as small as 100 microns, which is the size of a typical soil particle," said Dinneny.

The team named the new phenomenon hydropatterning and they observed it in several plant species, including the important crop plants maize and rice. The process is controlled by signaling pathways in the plant that are distinct from previously characterized drought responses suggesting that hydropatterning could be important for regulating root branching under non-stressful growth conditions.

"This simple observation opens up a whole new area of investigation for us," Dinneny said. "How plant cells distinguish between wet and dry environments is an important frontier that may lead to a better understanding of how plants efficiently use water."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Bao, P. Aggarwal, N. E. Robbins, C. J. Sturrock, M. C. Thompson, H. Q. Tan, C. Tham, L. Duan, P. L. Rodriguez, T. Vernoux, S. J. Mooney, M. J. Bennett, J. R. Dinneny. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1400966111

Cite This Page:

Carnegie Institution. "Water found to provide blueprints for root architecture." ScienceDaily. ScienceDaily, 9 June 2014. <www.sciencedaily.com/releases/2014/06/140609153435.htm>.
Carnegie Institution. (2014, June 9). Water found to provide blueprints for root architecture. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/06/140609153435.htm
Carnegie Institution. "Water found to provide blueprints for root architecture." ScienceDaily. www.sciencedaily.com/releases/2014/06/140609153435.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins