Featured Research

from universities, journals, and other organizations

Adaptive potential of hybridization in mosquito species

Date:
June 25, 2014
Source:
Liverpool School of Tropical Medicine
Summary:
A natural experiment created by insecticidal pressure to determine how the most important malaria vectors -- A. gambiae s.s. and A. coluzzii -- respond rapidly to environmental change has been conducted by researchers. Researchers sequenced the genomes of individual wild mosquitoes of each species from southern Ghana. The results reveal that transfer of a major insecticide resistance mutation resulted in replacement of over 3 million surrounding DNA bases of one to the other. This is especially significant because the two species are very closely related and the region replaced is one of relatively few areas of their genomes that are substantially different.

Researchers from LSTM have exploited a natural experiment created by insecticidal pressure to determine how the most important malaria vectors -- A. gambiae s.s. and A. coluzzii -- respond rapidly to environmental change.

Working with genome analysis specialists from the Wellcome Trust Sanger Institute and field entomologists in Ghana, LSTM researchers sequenced the genomes of individual wild mosquitoes of each species from southern Ghana. The results, published in Nature Communications, reveal that transfer of a major insecticide resistance mutation (kdr) resulted in replacement of over 3 million surrounding DNA bases (1.5% of the genome) of A. coluzzii, with that of A. gambiae s.s. This is especially significant because the two species are very closely related and the region replaced is one of relatively few areas of their genomes that are substantially different. Surprisingly, this apparently huge genomic disruption has had no detectable impact on reproductive isolation with hybridisation rates between the species in Ghana remaining low and stable despite a dramatic rise in frequency of the kdr mutation in A. coluzzii.

Dr David Weetman, co-first author and LSTM Lecturer in Population Genomics, said: "Our work demonstrates amazing flexibility in the genomes of closely related species. The genomic section replaced is not only huge but was previously considered a major 'speciation island'; a probable location for genes driving reproductive isolation between the species. The findings not only call into question the general importance of 'speciation islands', but also importantly show that these closely-related mosquito species, can evolve largely separately but then interchange genetic variation to allow rapid adaptation to human-driven environmental changes.."

The two species, which co-occur throughout much of West and Central Africa, exhibit behavioural and ecological differences. Anopheles coluzzii is thought to be able to exploit relatively stable agricultural breeding sites, which can extend malaria transmission far into the dry season. A. gambiae s.s. has traditionally been the more insecticide resistant, but, with transfer of insecticide resistance mutations, this is changing. In addition to concerns for vector control, this presented a near-unique opportunity to investigate the popular theory that new species form through the development of pockets of divergence in the genome containing speciation genes. Driven by technological advances and early work on the Anopheles gambiae species pair, this has become a rapidly-growing area of research in evolutionary biology.

LSTM's Professor Martin Donnelly, senior author of the study, said: "Through our collaboration with the Wellcome Trust Sanger Institute we are learning how to use Anopheles genomic information to address questions of immense evolutionary and public health importance. This paper is just a foretaste of the studies that the vector community will be able to perform as the Anopheles gambiae 1000 Genome data sets become available (see http://www.malariagen.net/projects/vector/ag1000g)."

"This is a wonderful example of how new technologies for genome sequence analysis can elucidate specific biological questions in the field," says Professor Dominic Kwiatkowski, Head of the Malaria Programme at the Wellcome Trust Sanger Institute, whose team have worked closely with LSTM on this project.


Story Source:

The above story is based on materials provided by Liverpool School of Tropical Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chris S. Clarkson, David Weetman, John Essandoh, Alexander E. Yawson, Gareth Maslen, Magnus Manske, Stuart G. Field, Mark Webster, Tiago Antใo, Bronwyn MacInnis, Dominic Kwiatkowski, Martin J. Donnelly. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5248

Cite This Page:

Liverpool School of Tropical Medicine. "Adaptive potential of hybridization in mosquito species." ScienceDaily. ScienceDaily, 25 June 2014. <www.sciencedaily.com/releases/2014/06/140625114808.htm>.
Liverpool School of Tropical Medicine. (2014, June 25). Adaptive potential of hybridization in mosquito species. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/06/140625114808.htm
Liverpool School of Tropical Medicine. "Adaptive potential of hybridization in mosquito species." ScienceDaily. www.sciencedaily.com/releases/2014/06/140625114808.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins