Featured Research

from universities, journals, and other organizations

Groovy giraffes: Distinct bone structures keep these animals upright

Date:
July 3, 2014
Source:
Society for Experimental Biology
Summary:
Researchers have identified a highly specialized ligament structure that is thought to prevent giraffes' legs from collapsing under the immense weight of these animals.

Giraffe bull, Etosha National Park.
Credit: EcoView / Fotolia

Researchers at the Royal Veterinary College have identified a highly specialised ligament structure that is thought to prevent giraffes' legs from collapsing under the immense weight of these animals. "Giraffes are heavy animals (around 1000 kg), but have unusually skinny limb bones for an animal of this size" explained lead investigator Christ Basu, a PhD student in the Structure & Motion Lab. "This means their leg bones are under high levels of mechanical stress."

Related Articles


In giraffes, the equivalents to our metatarsal bone (in the foot) and metacarpal bone (in the hand) are extremely elongated, accounting for roughly half the leg length. A distinct groove runs along the length of these bones, housing a structure called the suspensory ligament. This structure is found in other large animals, such as horses (which are well known for their ability to sleep whilst standing), but this is the first time that it has been studied in giraffes.

The researchers hypothesised that this arrangement may help solve the mystery of how the giraffes' spindly legs can support its weight. To test this, the researchers received donations of limbs from EU zoos; these came from giraffes which had died naturally in captivity or been euthanized for reasons unrelated to this work. The limbs were then fixed in a rigid frame. Using a hydraulic press, the researchers applied forces of up to 2500 Newtons (about 250 kilograms), to simulate the bodyweight supported by each limb.

It was found that the limbs remained upright and stable without any additional support and could even withstand greater loads. As the suspensory ligament is elastic tissue, and not muscle, it cannot generate force itself so can only offer passive support.

This means that giraffes can support their weight without actively engaging as much muscle, thereby reducing fatigue. The suspensory ligament is also thought to prevent the foot joints from overextending and protect the feet from collapsing. Chris Basu hopes that this information will help to explain how giraffes evolved from small, antelope-like species to the iconic long-necked animals we know today.

"I'd like to link modern giraffes with fossil specimens to illustrate the process of evolution" Mr Basu said. "We hypothesise that the suspensory ligament has allowed giraffes to reach large sizes that they otherwise would not have been able to achieve."


Story Source:

The above story is based on materials provided by Society for Experimental Biology. Note: Materials may be edited for content and length.


Cite This Page:

Society for Experimental Biology. "Groovy giraffes: Distinct bone structures keep these animals upright." ScienceDaily. ScienceDaily, 3 July 2014. <www.sciencedaily.com/releases/2014/07/140703102936.htm>.
Society for Experimental Biology. (2014, July 3). Groovy giraffes: Distinct bone structures keep these animals upright. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/07/140703102936.htm
Society for Experimental Biology. "Groovy giraffes: Distinct bone structures keep these animals upright." ScienceDaily. www.sciencedaily.com/releases/2014/07/140703102936.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins