Featured Research

from universities, journals, and other organizations

Sweet genes: New way found by which metabolism is linked to the regulation of DNA

Date:
July 3, 2014
Source:
University of Alberta Faculty of Medicine & Dentistry
Summary:
Scientists have discovered a new way by which metabolism is linked to the regulation of DNA, the basis of our genetic code. The findings may have important implications for the understanding of many common diseases, including cancer.

A research team at the Faculty of Medicine & Dentistry at the University of Alberta have discovered a new way by which metabolism is linked to the regulation of DNA, the basis of our genetic code. The findings may have important implications for the understanding of many common diseases, including cancer.

The DNA wraps around specialized proteins called histones in the cell's nucleus. Normally, histones keep the DNA tightly packaged, preventing the expression of genes and the replication of DNA, which are required for cell growth and division. In order for these critical functions to take place, histones need to be modified with the attachment of an acetyl-group, donated by a critical molecule called acetyl-CoA. This attachment relaxes the DNA, allowing for DNA replication and gene expression. This mechanism is called "epigenetic regulation of DNA" and is important for normal functions (like the growth of an embryo or brain functions) or in common diseases like heart failure or cancer. Until now, how the nucleus generates acetyl-CoA for histone acetylation had remained elusive.

The research team, lead by postdoctoral fellow Gopinath Sutendra and professor Evangelos Michelakis in the Department of Medicine, discovered that an enzyme thought to reside only within mitochondria, called Pyruvate Dehydrogenase Complex (PDC), can actually find its way into the nucleus and do what it is designed to do in the mitochondria: generate acetyl-CoA. When in mitochondria, PDC uses the carbohydrates from our diet to generate acetyl-CoA for energy production. When in the nucleus, PDC can produce acetyl-CoA for histone acetylation.

"Although this jumping of an enzyme from one organelle into another in the cell is not unheard off, our results were quite surprising," Sutendra says. "We wanted to measure acetyl-CoA levels and PDC in the mitochondria because that's where we thought they were. But accidentally we had the nuclei isolated at the same time and we saw PDC in the nucleus. So we asked, 'what is PDC doing there?' And that started it all."

"We were surprised that, despite the recognized importance of histone acetylation in cell biology and medicine, and despite the efforts by many to develop drugs that regulate histone acetylation, the source of acetyl-CoA in the nucleus had remained unknown," Michelakis says. "Sometimes the answers to important biological questions are just next to you, waiting to be discovered," he adds.

The team found that the translocation of PDC into the nucleus made cancer cells grow faster, an observation that may lead to additional strategies in the war against cancer. Yet, because the findings relate to how our DNA is regulated in general, this work may have far broader implications for many physiologic or pathologic conditions where epigenetic regulation is critical. "We are very excited about this new pathway linking energy production (the process known as metabolism) with gene regulation," the researchers say.

The work is published in the July 3, 2014, issue of the journal Cell. Michelakis is particularly proud of the fact that this is the product of a team that is entirely based at the University of Alberta. Many young researchers in the Department of Medicine like Adam Kinnaird, Peter Dromparis and Roxane Paulin were critical members of the team that also included technicians (Trevor Stenson, Alois Haromy, Kyoko Hashimoto) and researchers from the NanoFAB facility (Nancy Zhang, Eric Flaim). The work was funded by the Canadian Institutes for Health Research and the Hecht Foundation (Vancouver, Canada).


Story Source:

The above story is based on materials provided by University of Alberta Faculty of Medicine & Dentistry. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gopinath Sutendra, Adam Kinnaird, Peter Dromparis, Roxane Paulin, TrevorH. Stenson, Alois Haromy, Kyoko Hashimoto, Nancy Zhang, Eric Flaim, EvangelosD. Michelakis. A Nuclear Pyruvate Dehydrogenase Complex Is Important for the Generation of Acetyl-CoA and Histone Acetylation. Cell, 2014; 158 (1): 84 DOI: 10.1016/j.cell.2014.04.046

Cite This Page:

University of Alberta Faculty of Medicine & Dentistry. "Sweet genes: New way found by which metabolism is linked to the regulation of DNA." ScienceDaily. ScienceDaily, 3 July 2014. <www.sciencedaily.com/releases/2014/07/140703151821.htm>.
University of Alberta Faculty of Medicine & Dentistry. (2014, July 3). Sweet genes: New way found by which metabolism is linked to the regulation of DNA. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/07/140703151821.htm
University of Alberta Faculty of Medicine & Dentistry. "Sweet genes: New way found by which metabolism is linked to the regulation of DNA." ScienceDaily. www.sciencedaily.com/releases/2014/07/140703151821.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins