Featured Research

from universities, journals, and other organizations

Enhancing biofuel yields from biomass with novel new method

Date:
August 4, 2014
Source:
University of California - Riverside
Summary:
A versatile, relatively non-toxic, and efficient way to convert raw agricultural and forestry residues and other plant matter -- known as lignocellulosic biomass, into biofuels and chemicals -- has been developed by researchers. The method brings researchers closer to solving the long elusive goal of producing fuels and chemicals from biomass at high enough yields and low enough costs to become a viable alternative or replacement for petroleum-based fuels and chemicals.

Charles Cai, a graduate student at UC Riverside, holds a mixture of maple wood and tetrahydrofuran (THF).
Credit: Image courtesy of University of California - Riverside

A team of researchers, led by Professor Charles E. Wyman, at the University of California, Riverside's Bourns College of Engineering have developed a versatile, relatively non-toxic, and efficient way to convert raw agricultural and forestry residues and other plant matter, known as lignocellulosic biomass, into biofuels and chemicals.

Related Articles


The patent-pending method, called Co-solvent Enhanced Lignocellulosic Fractionation (CELF), brings researchers closer to solving the long elusive goal of producing fuels and chemicals from biomass at high enough yields and low enough costs to become a viable alternative or replacement for petroleum-based fuels and chemicals.

"Real estate is about location, location, location," said Wyman, the Ford Motor Company Chair in Environmental Engineering at UC Riverside's Center for Environmental Research and Technology (CE-CERT). "Successful commercialization of biofuels technology is about yield, yield, yield, and we obtained great yields with this novel technology."

The key to the UC Riverside technology is using tetrahydrofuran (THF) as a co-solvent to aid in the breakdown of raw biomass feedstocks to produce valuable primary and secondary fuel precursors at high yields at moderate temperatures.

Those fuel precursors can then be converted into ethanol, chemicals or drop-in fuels. Drop-in fuels have similar properties to conventional gasoline, jet, and diesel fuels and can be used without significant changes to vehicles or current transportation infrastructure.

Compared to other available biomass solvents, THF is well-suited for this application because it mixes homogenously with water, has a low boiling point (66 degrees Celsius) to allow for easy recovery, and can be regenerated as an end product of the process, said Charles M. Cai, a Ph.D. student working with Wyman.

CELF is unique in that it can consolidate multiple processing steps -- such as pretreatment, sugar hydrolysis, and sugar catalysis -- into one step. This reduces the water content of the reaction to maximize the amount of actual solids that can be loaded and also conserve heat and energy.

The process is also tunable so that different end products can be made by changing the configurations.

In a recently published paper in the journal Green Chemistry, the UC Riverside researchers showed that using CELF with highly selective acid catalysts called metal halides was particularly effective at simultaneously producing the fuel precursors furfural and 5-hydroxymethylfurfural (5-HMF) directly from raw maple wood.

Lignocellulosic biomass, which is the only sufficiently prevalent sustainable resource for conversion into liquid transportation fuels, is the most abundant organic material on Earth. It is composed of three major components: cellulose, hemicellulose and lignin.

To create precursors for drop-in biofuels, the cellulose is broken down into hydroxymethylfurfural (5-HMF) and most of the hemicellulose is broken down into furfural. The lignin is generally considered a waste product and burnt to produce energy, although that thought is changing.

Furfural and 5-HMF are widely recognized renewable chemicals for their conversion into gasoline, jet, and diesel range liquid fuels. Furfural and 5-HMF further can be further chemo-catalytically upgraded to drop-in fuels including 2-methylfuran (MF) and 2,5- dimethylfuran (DMF).

Using the combination of CELF with iron chloride, a type of metal halide, to break down the maple wood, Cai and the research team obtained yields of 95 percent of the theoretical maximum for and 51 percent for 5-HMF in a single pot reaction. This presents an improvement in yield rates of almost 50 percent over current commercial technologies and can thereby potentially reduce the cost of furfural production to within the range of current price of crude oil.

In addition to the high yield rates, more than 90 percent of the lignin was dissolved and extracted by CELF and recovered as a fine powdered product.

Lignin is often unused or burned. However, lignin is actually a promising resource for making additional high value chemicals and fuels once it is extracted and depolymerized with CELF. Because THF is easily recovered at low temperatures, its removal after the reaction allows the dissolved lignin particles to reform as solids that precipitate out of solution.

The recently published paper in Green Chemistry is titled "Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy." In addition to Cai and Wyman, co-authors are Nikhil Nagane, a graduate student in Wyman's lab who performed studies on reaction kinetics with CELF, and Rajeev Kumar, an assistant research engineer in Wyman's group who advises the graduate students along with Wyman.

In previous work, outlined in a 2013 paper published in Green Chemistry, Cai introduced the use of CELF with simple acids as a method to produce sugars for biological processes such as fermentation.

In this case, the technology is being employed in ongoing project at UC Riverside to combine CELF technology with microbial production of fuels, such as ethanol and butanol, by using CELF to produce highly reactive sugar-rich materials from lignocellulosic biomass that can be easily broken down to simple sugars using zero or very low levels of added enzymes.


Story Source:

The above story is based on materials provided by University of California - Riverside. The original article was written by Sean Nealon. Note: Materials may be edited for content and length.


Journal References:

  1. Charles M. Cai, Nikhil Nagane, Rajeev Kumar, Charles E. Wyman. Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chemistry, 2014; 16 (8): 3819 DOI: 10.1039/C4GC00747F
  2. Charles M. Cai, Taiying Zhang, Rajeev Kumar, Charles E. Wyman. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chemistry, 2013; 15 (11): 3140 DOI: 10.1039/c3gc41214h

Cite This Page:

University of California - Riverside. "Enhancing biofuel yields from biomass with novel new method." ScienceDaily. ScienceDaily, 4 August 2014. <www.sciencedaily.com/releases/2014/08/140804134302.htm>.
University of California - Riverside. (2014, August 4). Enhancing biofuel yields from biomass with novel new method. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2014/08/140804134302.htm
University of California - Riverside. "Enhancing biofuel yields from biomass with novel new method." ScienceDaily. www.sciencedaily.com/releases/2014/08/140804134302.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) — A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Yellow-Spotted Turtles Rescued from Trafficking

Yellow-Spotted Turtles Rescued from Trafficking

Reuters - Light News Video Online (Nov. 24, 2014) — Hundreds of Amazon River turtles released into the wild in Peru. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins