Featured Research

from universities, journals, and other organizations

Angry bees: Insect aggression boosted by altering brain metabolism

Date:
August 5, 2014
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists report they can crank up insect aggression simply by interfering with a basic metabolic pathway in the insect brain. Their study, of fruit flies and honey bees, shows a direct, causal link between brain metabolism -- how the brain generates the energy it needs to function -- and aggression.

Some insects are more aggressive than others in response to an intruder.
Credit: Jon Sullivan

Scientists report they can crank up insect aggression simply by interfering with a basic metabolic pathway in the insect brain. Their study, of fruit flies and honey bees, shows a direct, causal link between brain metabolism (how the brain generates the energy it needs to function) and aggression.

The team reports its findings in the Proceedings of the National Academy of Sciences.

The new research follows up on previous work from the laboratory of University of Illinois entomology professor and Institute for Genomic Biology director Gene Robinson, who also led the new analysis. When he and his colleagues looked at brain gene activity in honey bees after they had faced down an intruder, the team found that some metabolic genes were suppressed. These genes play a key role in the most efficient type of energy generation in cells, a process called oxidative phosphorylation.

"It was a counterintuitive finding because these genes were down-regulated," Robinson said. "You tend to think of aggression as requiring more energy, not less."

In the new study, postdoctoral researcher Clare Rittschof used drugs to suppress key steps in oxidative phosphorylation in the bee brains. She saw that aggression increased in the drugged bees in a dose-responsive manner, Robinson said. But the drugs had no effect on chronically stressed bees -- they were not able to increase their aggression in response to an intruder.

"Something about chronic stress changed their response to the drug, which is a fascinating finding in and of itself," Robinson said. "We want to know just how this experience gets under their skin to affect their brain."

In separate experiments, postdoctoral researcher Hongmei Li-Byarlay and undergraduate student Jonathan Massey found that reduced oxidative phosphorylation in fruit flies also increased aggression. Using advanced fly genetics, the team found this effect only when oxidative phosphorylation was reduced in neurons, but not in neighboring cells known as glia. This result, too, was surprising, since "glia are metabolically very active, and are the energy storehouses of the brain," Robinson said.

The findings offer insight into the immediate and longer-term changes that occur in response to threats, Robinson said.

"When an animal faces a threat, it has an immediate aggressive response, within seconds," Robinson said. But changes in brain metabolism take much longer and cannot account for this immediate response, he said. Such changes likely make individuals more vigilant to subsequent threats.

"This makes good sense in an ecological sense," Robinson said, "because threats often come in bunches."

The fact that the researchers observed these effects in two species that diverged 300 million years ago makes the findings even more compelling, Robinson said.

"Because fruit flies and honey bees are separated by 300 million years of evolution, this is a very robust and well-conserved mechanism," he said.

Video of honey bees responding to an intruder: https://www.youtube.com/watch?v=niZ3UiWz36Q


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Li-Byarlay, C. C. Rittschof, J. H. Massey, B. R. Pittendrigh, G. E. Robinson. Socially responsive effects of brain oxidative metabolism on aggression. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1412306111

Cite This Page:

University of Illinois at Urbana-Champaign. "Angry bees: Insect aggression boosted by altering brain metabolism." ScienceDaily. ScienceDaily, 5 August 2014. <www.sciencedaily.com/releases/2014/08/140805221249.htm>.
University of Illinois at Urbana-Champaign. (2014, August 5). Angry bees: Insect aggression boosted by altering brain metabolism. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2014/08/140805221249.htm
University of Illinois at Urbana-Champaign. "Angry bees: Insect aggression boosted by altering brain metabolism." ScienceDaily. www.sciencedaily.com/releases/2014/08/140805221249.htm (accessed September 21, 2014).

Share This



More Mind & Brain News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Food Addiction Might Be Caused By PTSD

Food Addiction Might Be Caused By PTSD

Newsy (Sep. 18, 2014) New research shows that women who suffer from PTSD are three times more likely to develop a food addiction. Video provided by Newsy
Powered by NewsLook.com
Corporal Punishment on Decline, Debate Renews

Corporal Punishment on Decline, Debate Renews

AP (Sep. 16, 2014) Corporal punishment in the United States is on the decline, but there is renewed debate over its use after Minnesota Vikings running back Adrian Peterson was charged with child abuse. (Sept. 16) Video provided by AP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins