Featured Research

from universities, journals, and other organizations

Finding genetic culprits that drive antibiotic resistance: Genome-wide association study

Date:
August 7, 2014
Source:
Wellcome Trust Sanger Institute
Summary:
A powerful new tool has been developed that could help in developing more effective treatment and control strategies for antibiotic resistance within the next decade. Researchers used a genome-wide association study (GWAS) to find the single-letter changes in the DNA of Streptococcus pneumoniae that enable it to evade antibiotic treatment. Until now, GWAS has been able to identify only general areas where DNA changes have occurred. However, by using a rich data set of over 3,000 samples, researchers have been able to get precise data on the locations of changes that cause resistance.

A powerful new tool has been developed that could help in developing more effective treatment and control strategies for antibiotic resistance within the next decade.

Researchers used a genome-wide association study (GWAS) to find the single-letter changes in the DNA of Streptococcus pneumoniae that enable it to evade antibiotic treatment. Until now, GWAS has been able to identify only general areas where DNA changes have occurred. However, by using a rich data set of over 3,000 samples, researchers have been able to get precise data on the locations of changes that cause resistance.

The study opens up new avenues of research in bacterial genomics that were previously thought impossible.

Researchers have developed a powerful new tool to identify genetic changes in disease-causing bacteria that are responsible for antibiotic resistance. The results from this technique could be used in clinics within the next decade to decide on the most effective treatments for diseases such as pneumonia and meningitis.

The team looked at the genome of Streptococcus pneumoniae, a bacterial species that causes 1.6 million deaths worldwide each year. In the most detailed research of its kind, scientists used a genome-wide association study (GWAS) to locate single-letter changes in the DNA code of the bacterium, which enable it to evade antibiotic treatment.

While GWAS has been used for a decade to identify gene function in humans, it was thought to be impossible to use the technique on bacterial DNA until now.

"The results of this research are very interesting," says Claire Chewapreecha, first author from the Wellcome Trust Sanger Institute. "For the first time, we are able to see, at large scale, causative variants that allow bacteria such as Streptococcus pneumoniae to resist our efforts to treat and control it.

"We can begin to see how this might help us to develop more effective treatment strategies in the near future."

GWAS studies search through the genome for locations where single DNA changes are associated with properties of the organism, like antibiotic resistance. For this to work, it is essential that a genetic exchange process called recombination has occurred. This is where two DNA sequences combine, exchanging genetic data, and shuffling combinations of single changes. Because recombination, which is very common in humans, is rare in bacteria, researchers have previously been unable to locate the individual changes in the sequence of bases that make up a gene. Until now it has only been possible to locate the general area where change has occurred in so-called mosaic genes comprised of genetic data from multiple strains of bacteria.

To overcome this hurdle, researchers used the richest available set of data for S. pneumoniae, which was collected by Dr Claudia Turner, a Research Paediatrician, and Dr Paul Turner, a Clinical Microbiologist, at the Mahidol Oxford Tropical Medicine Research Unit. The dataset of over 3,000 samples of Streptococcus pneumoniae isolated from almost 1,000 infants and mothers at a refugee camp on the border between Myanmar and Thailand provided enough recombination events to give researchers precise data about the locations of changes that cause resistance. A second set of several hundred isolates was collected from Massachusetts as part of a project to assess the impact of the vaccine against S. pneumoniae introduced in the USA in 2001.

"In this study we've shown that this powerful genetic tool, which has transformed our understanding of human genetics, can be applied to bacteria," says Professor Stephen Bentley, a senior author from the Sanger Institute. "This opens up new avenues of research into antibiotic resistance, transmission and virulence that were previously thought impossible in bacterial genomics."

The next phase of research will involve fine tuning the technique to be able to identify genes in bacteria that make strains more virulent and genes that enable transmission of a bacterial strains between hosts. As genetic sequencing moves into clinics, this detailed understanding will inform control and treatment strategies.

"Uncovering all the single-letter differences underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology," says Professor Julian Parkhill. "GWAS will enable this by allowing us to pinpoint the location of the real genetic culprits rather than our current mapping that gets us only to the right general area."


Story Source:

The above story is based on materials provided by Wellcome Trust Sanger Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Claire Chewapreecha, Pekka Marttinen, Nicholas J. Croucher, Susannah J. Salter, Simon R. Harris, Alison E. Mather, William P. Hanage, David Goldblatt, Francois H. Nosten, Claudia Turner, Paul Turner, Stephen D. Bentley, Julian Parkhill. Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes. PLoS Genetics, 2014; 10 (8): e1004547 DOI: 10.1371/journal.pgen.1004547

Cite This Page:

Wellcome Trust Sanger Institute. "Finding genetic culprits that drive antibiotic resistance: Genome-wide association study." ScienceDaily. ScienceDaily, 7 August 2014. <www.sciencedaily.com/releases/2014/08/140807145613.htm>.
Wellcome Trust Sanger Institute. (2014, August 7). Finding genetic culprits that drive antibiotic resistance: Genome-wide association study. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2014/08/140807145613.htm
Wellcome Trust Sanger Institute. "Finding genetic culprits that drive antibiotic resistance: Genome-wide association study." ScienceDaily. www.sciencedaily.com/releases/2014/08/140807145613.htm (accessed September 22, 2014).

Share This



More Plants & Animals News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins