New! Sign up for our free email newsletter.
Science News
from research organizations

Carbon dioxide 'sponge' could ease transition to cleaner energy


Date:
August 10, 2014
Source:
American Chemical Society (ACS)
Summary:
A plastic sponge that sops up the greenhouse gas carbon dioxide might ease our transition away from polluting fossil fuels to new energy sources like hydrogen. A relative of food container plastics could play a role in President Obama’s plan to cut carbon dioxide emissions. The material might also someday be integrated into power plant smokestacks.
Share:
FULL STORY

A sponge-like plastic that sops up the greenhouse gas carbon dioxide (CO2) might ease our transition away from polluting fossil fuels and toward new energy sources, such as hydrogen. The material -- a relative of the plastics used in food containers -- could play a role in President Obama's plan to cut CO2 emissions 30 percent by 2030, and could also be integrated into power plant smokestacks in the future.

The report on the material is one of nearly 12,000 presentations at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, taking place here through Thursday.

"The key point is that this polymer is stable, it's cheap, and it adsorbs CO2 extremely well. It's geared toward function in a real-world environment," says Andrew Cooper, Ph.D. "In a future landscape where fuel-cell technology is used, this adsorbent could work toward zero-emission technology."

CO2 adsorbents are most commonly used to remove the greenhouse gas pollutant from smokestacks at power plants where fossil fuels like coal or gas are burned. However, Cooper and his team intend the adsorbent, a microporous organic polymer, for a different application -- one that could lead to reduced pollution.

The new material would be a part of an emerging technology called an integrated gasification combined cycle (IGCC), which can convert fossil fuels into hydrogen gas. Hydrogen holds great promise for use in fuel-cell cars and electricity generation because it produces almost no pollution. IGCC is a bridging technology that is intended to jump-start the hydrogen economy, or the transition to hydrogen fuel, while still using the existing fossil-fuel infrastructure. But the IGCC process yields a mixture of hydrogen and CO2 gas, which must be separated.

Cooper, who is at the University of Liverpool, says that the sponge works best under the high pressures intrinsic to the IGCC process. Just like a kitchen sponge swells when it takes on water, the adsorbent swells slightly when it soaks up CO2 in the tiny spaces between its molecules. When the pressure drops, he explains, the adsorbent deflates and releases the CO2­, which they can then collect for storage or convert into useful carbon compounds.

The material, which is a brown, sand-like powder, is made by linking together many small carbon-based molecules into a network. Cooper explains that the idea to use this structure was inspired by polystyrene, a plastic used in styrofoam and other packaging material. Polystyrene can adsorb small amounts of CO2 by the same swelling action.

One advantage of using polymers is that they tend to be very stable. The material can even withstand being boiled in acid, proving it should tolerate the harsh conditions in power plants where CO2 adsorbents are needed. Other CO2 scrubbers -- whether made from plastics or metals or in liquid form -- do not always hold up so well, he says. Another advantage of the new adsorbent is its ability to adsorb CO2 without also taking on water vapor, which can clog up other materials and make them less effective. Its low cost also makes the sponge polymer attractive. "Compared to many other adsorbents, they're cheap," Cooper says, mostly because the carbon molecules used to make them are inexpensive. "And in principle, they're highly reusable and have long lifetimes because they're very robust."

Cooper also will describe ways to adapt his microporous polymer for use in smokestacks and other exhaust streams. He explains that it is relatively simple to embed the spongy polymers in the kinds of membranes already being evaluated to remove CO­2 from power plant exhaust, for instance. Combining two types of scrubbers could make much better adsorbents by harnessing the strengths of each, he explains.

The research was funded by the Engineering and Physical Sciences Research Council and E.ON Energy.


Story Source:

Materials provided by American Chemical Society (ACS). Note: Content may be edited for style and length.


Cite This Page:

American Chemical Society (ACS). "Carbon dioxide 'sponge' could ease transition to cleaner energy
." ScienceDaily. ScienceDaily, 10 August 2014. <www.sciencedaily.com/releases/2014/08/140810124200.htm>.
American Chemical Society (ACS). (2014, August 10). Carbon dioxide 'sponge' could ease transition to cleaner energy
. ScienceDaily. Retrieved March 18, 2024 from www.sciencedaily.com/releases/2014/08/140810124200.htm
American Chemical Society (ACS). "Carbon dioxide 'sponge' could ease transition to cleaner energy
." ScienceDaily. www.sciencedaily.com/releases/2014/08/140810124200.htm (accessed March 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES