Featured Research

from universities, journals, and other organizations

500-million-year reset for immune system

Date:
August 18, 2014
Source:
Max-Planck-Gesellschaft
Summary:
A single factor can reset the immune system of mice to a state likely similar to what it was 500 million years ago, when the first vertebrates emerged. The model, researchers report, could provide an explanation of how the immune system had developed in the course of evolution.

The normal mouse thymus (left) contains only a small fraction of B-cells (red). If the gene FOXN4 is activated, a fish-like thymus with many B-cells develops. This state is likely to have existed about 500 million years ago, at the time when the first vertebrates emerged.
Credit: © Max Planck Institute of Immunobiology & Epigenetics

Scientists at the Max Planck Institute of Immunobiology and Epigenetics (MPI-IE) in Freiburg re-activated expression of an ancient gene, which is not normally expressed in the mammalian immune system, and found that the animals developed a fish-like thymus. To the researchers surprise, while the mammalian thymus is utilized exclusively for T cell maturation, the reset thymus produced not only T cells, but also served as a maturation site for B cells -- a property normally seen only in the thymus of fish. Thus the model could provide an explanation of how the immune system had developed in the course of evolution.

Related Articles


The study has been published in Cell Reports.

The adaptive immune response is unique to vertebrates. One of its core organs is the thymus, which exists in all vertebrate species. Epithelial cells in the thymus control the maturation of T-cells, which later fight degenerated or infected body cells. The gene FOXN1 is responsible for the development of such T-cells in the mammalian thymus. Scientists led by Thomas Boehm, director at the MPI-IE and head of the department for developmental immunology, activated the evolutionary ancestor of FOXN1, called FOXN4, in the thymic epithelial cells of mice. FOXN4 is present in all vertebrates, but appears to play only a role in the maturation of immune cells of jawed fish, such as cat sharks and zebra fish.

"The simultanuous expression of FOXN4 and FOXN1 in the mouse led to a thymus that showed properties as in fish," said first author Jeremy Swann. Together with earlier results this suggests that the development and function of thymic tissue was originally intitiated by FOXN4. Due to an evolutionary gene duplication, which led to FOXN1, transiently both genes, and finally only FOXN1 were active in the thymus.

To the researchers surprise not only T-cells developed in the thymus of the mice, but also B-cells. Mature B-cells are responsible for antibody production. In mammals, they normally do not mature in the thymus, but in other organs, such as the bone marrow.

"Our studies suggest a plausible scenario for the transition of a bipotent lymphopoietic tissue to a lymphoid organ supporting primarily T cell development," said Boehm. Since B- and T-cell progenitors can not yet be distinguished, it remains unclear whether the B-cell development is based on the migration of dedicated B-cell precursors to the thymus, or to maturation from a shared T/B progenitor in the thymus itself. Comparative studies often suggest that the origin of a particular evolutionary innovation must have occurred in an extinct species. "Here, the re-creation and functional analysis of presumed ancestral stages could provide essential insights into the course of such developments," explained Boehm the study approach.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeremy B. Swann, Annelies Weyn, Daisuke Nagakubo, Conrad C. Bleul, Atsushi Toyoda, Christiane Happe, Nikolai Netuschil, Isabell Hess, Annette Haas-Assenbaum, Yoshihito Taniguchi, Michael Schorpp, Thomas Boehm. Conversion of the Thymus into a Bipotent Lymphoid Organ by Replacement of Foxn1 with Its Paralog, Foxn4. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.07.017

Cite This Page:

Max-Planck-Gesellschaft. "500-million-year reset for immune system." ScienceDaily. ScienceDaily, 18 August 2014. <www.sciencedaily.com/releases/2014/08/140818135132.htm>.
Max-Planck-Gesellschaft. (2014, August 18). 500-million-year reset for immune system. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2014/08/140818135132.htm
Max-Planck-Gesellschaft. "500-million-year reset for immune system." ScienceDaily. www.sciencedaily.com/releases/2014/08/140818135132.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com
What's Different About This Latest Ebola Vaccine

What's Different About This Latest Ebola Vaccine

Newsy (Mar. 26, 2015) — A whole virus Ebola vaccine has been shown to protect monkeys exposed to the virus. Here&apos;s what&apos;s different about this vaccine. Video provided by Newsy
Powered by NewsLook.com
HIV Outbreak Prompts Public Health Emergency In Indiana

HIV Outbreak Prompts Public Health Emergency In Indiana

Newsy (Mar. 26, 2015) — Indiana Gov. Mike Pence says he will bring additional state resources to help stop the epidemic. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins