Featured Research

from universities, journals, and other organizations

Bacterial nanowires: 'Electric bacteria' not what we thought they were

Date:
August 18, 2014
Source:
University of Southern California
Summary:
Scientists have discovered that bacterial nanowires (which conduct electricity, allowing certain bacteria to breathe) are actually extensions of the bacteria's outer membrane -- not pili, as originally thought. Understanding the way these electric bacteria work has applications well beyond the lab. Such creatures have the potential to address some of the big questions about the nature of life itself, including what types of lifeforms we might find in extreme environments, like space.

Still image from video showing Shewanella bacteria roughly 1/50th the width of a human hair reaching out nanowires to breathe when deprived of oxygen. These types of bacteria are typically found underground or in lake or ocean sediments, where oxygen is scarce. (Clips from “Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components,” El-Naggar et al., PNAS 2014)
Credit: Courtesy of University of Southern California

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety of solid surfaces.

Related Articles


Today, a team led by scientists at USC has turned the study of these bacterial nanowires on its head, discovering that the key features in question are not pili, as previously believed, but rather are extensions of the bacteria's outer membrane equipped with proteins that transfer electrons, called "cytochromes."

Scientists had long suspected that bacterial nanowires were pili -- Latin for "hair" -- which are hair-like features common on other bacteria, allowing them to adhere to surfaces and even connect to one another. Given the similarity of shape, it was easy to believe that nanowires were pili. But Moh El-Naggar, assistant professor at the USC Dornsife College of Letters, Arts and Sciences, says he was always careful to avoid saying that he knew for sure that's what they were.

"The pili idea was the strongest hypothesis, but we were always cautious because the exact composition and structure were very elusive. Then we solved the experimental challenges and the hard data took us in a completely different direction. I have never been happier about being wrong. In many ways, it turned out to be an even cleverer way for bacteria to power themselves," said El-Naggar, corresponding author of the study, who was named a Popular Science Brilliant 10 researcher in 2012 for his pioneering work with bacterial nanowires.

This latest study will be published online by the Proceedings of the National Academy of Sciences on August 18.

Scientists from USC collaborated with colleagues from Penn State, the University of Wisconsin-Milwaukee, Pacific Northwest National Laboratory, and Rensselaer Polytechnic Institute on the research.

The first clue came from tracking the genes of the bacteria. During the formation of nanowires, scientists noted an increase in the expression of electron transport genes, but no corresponding increase in the expression of pilin genes.

Challenged by this evidence of what nanowires weren't, the team next needed to figure out what they actually were. El-Naggar credits Sahand Pirbadian, USC graduate student, with devising an ingenious yet simple strategy to make the discovery.

By depriving the bacteria of oxygen, the researchers were able to force the bacteria to stretch out their nanowires on command, allowing the process to be observed in real time. And by staining the bacterial membrane, periplasm, cytoplasm, and specific proteins, researchers were able to take video of the nanowires reaching out -- confirming that they were based on membrane, and not pili at all.

The process isn't as simple as it sounds. Generating videos of the nanowires stretching out required new methods to simultaneously label multiple features, keep a camera focused on the wriggling bacteria, and combine the optical techniques with atomic force microscopy to gain higher resolution.

"It took us about a year just to develop the experimental set-up and figure out the right conditions for the bacteria to produce nanowires," Pirbadian said. "We had to go back and re-examine some older experiments and rethink what we knew about the organism. Once we were able to induce nanowire growth, we started analyzing their composition and structure, which took another year of work. But it was well worth the effort because the outcome was very surprising -- but in hindsight made a lot of sense."

Understanding the way these electric bacteria work has applications well beyond the lab. Such creatures have the potential to address some of the big questions about the nature of life itself, including what types of lifeforms we might find in extreme environments, like space. In addition, this research has the potential to inform the creation of living, microbial circuits -- forming the foundation of hybrid biological-synthetic electronic devices.

This research was funded at USC by the U.S. Department of Energy and Air Force Office of Scientific Research and made possible by facilities at the USC Centers of Excellence in NanoBioPhysics and Electron Microsopy and Microanalysis.


Editor's Note: A video of the bacteria is available on YouTube at https://www.youtube.com/watch?v=CZkv_Kiwf0E


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sahand Pirbadian, Sarah E. Barchinger, Kar Man Leung, Hye Suk Byun, Yamini Jangir, Rachida A. Bouhenni, Samantha B. Reed, Margaret F. Romine, Daad A. Saffarini, Liang Shi, Yuri A. Gorby, John H. Golbeck, and Mohamed Y. El-Naggar. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. PNAS, August 2014 DOI: 10.1073/pnas.1410551111

Cite This Page:

University of Southern California. "Bacterial nanowires: 'Electric bacteria' not what we thought they were." ScienceDaily. ScienceDaily, 18 August 2014. <www.sciencedaily.com/releases/2014/08/140818152511.htm>.
University of Southern California. (2014, August 18). Bacterial nanowires: 'Electric bacteria' not what we thought they were. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/08/140818152511.htm
University of Southern California. "Bacterial nanowires: 'Electric bacteria' not what we thought they were." ScienceDaily. www.sciencedaily.com/releases/2014/08/140818152511.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins