Featured Research

from universities, journals, and other organizations

First crystal structure of the C. difficile surface protein Cwp84

Date:
August 19, 2014
Source:
International Union of Crystallography
Summary:
Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. This study provides some insights that may help in developing a new type of drug to treat the infection.

The bacterium Clostridium difficile causes antibiotic-related diarrhea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the human gut when other "healthy" microbes have been destroyed during a course of antibiotics might lead to new ways to control infection. An important clue was reported recently in an open access article published in the journal Acta Crystallographica Section D Biological Crystallography.

Ravi Acharya of the University of Bath, UK, and colleagues have reported the first crystal structure of the C. difficile surface protein Cwp84. This cysteine protease enzyme is found on the surface of the bacterium and assists with production of the microbe's surface-layer, which is likely to play an essential step in the colonisation of the gut. The enzyme cleaves a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits. Now, Acharya and colleagues have identified three critical regions in a mutant of the enzyme that could represent novel targets for drugs to attack C. difficile by blocking maturation of its surface layer during colonisation.

While C. difficile can be present in the normal, healthy gut (3-5% of adults), when a patient requires treatment for infection with broad-spectrum antibiotics, other protective intestinal microbes are eradicated in the process and the incidence increases to about 20%. This leaves space for the pathogenic C. difficile to grow rapidly unhindered leading to the release of toxins that cause bloating, pain and severe diarrhea. Sometimes potentially life-threatening pseudo-membranous colitis or toxic megacolon occurs (about 5 to 8% of patients). Outbreaks occur when people ingest the spores, often in contaminated medical facilities and C. difficile is known to kill tens of thousands of people every year worldwide. Mild cases are often resolved by simply halting antibiotic treatment but in more severe cases last-line antibiotics such as vancomycin and metronidazole are often needed. Worryingly, the relapse rate is 20 to 30%.

The team explains that while Cwp84 is essential for correct surface layer formation it may also break down extracellular proteins, such as fibronectin, laminin and vitronectin which are found in the body. Nevertheless, blocking its activity either genetically or chemically prevents proper growth of bacterial colonies even if this is not in itself bactericidal. Disruption of the colonization process might therefore be possible allowing healthy microbes to repopulate the gut and stifle the spread of C. difficile.

The researchers carried out X-ray crystallography at station I03 at Diamond Light Source in Didcot, UK. The resulting high-resolution (1.4 angstrom) diffraction data revealed the structure of the N-terminal propeptide, the cysteine protease domain, and a previously uncharacterized "linker" region that is 170 amino acids long. The linker lies between the cysteine protease domain and the repeat region of Cwp84 which holds it onto the cells surface. The linker region binds calcium and resembles a group of proteins known as lectins, so may have an affinity for carbohydrates which may be vital for correct cell wall processing. The same motifs are present in other types of Clostridium microbes as well as ancient single-celled organisms known as archaea.

The team suggests that the insights their research offers in terms of C. difficile surface layer growth and how this relates to gut colonization could be exploited in developing a new type of drug to treat infection-anti-colonization inhibitors.


Story Source:

The above story is based on materials provided by International Union of Crystallography. Note: Materials may be edited for content and length.


Journal Reference:

  1. William J. Bradshaw, Jonathan M. Kirby, Nethaji Thiyagarajan, Christopher J. Chambers, Abigail H. Davies, April K. Roberts, Clifford C. Shone, K. Ravi Acharya. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein fromClostridium difficile. Acta Crystallographica Section D Biological Crystallography, 2014; 70 (7): 1983 DOI: 10.1107/S1399004714009997

Cite This Page:

International Union of Crystallography. "First crystal structure of the C. difficile surface protein Cwp84." ScienceDaily. ScienceDaily, 19 August 2014. <www.sciencedaily.com/releases/2014/08/140819113006.htm>.
International Union of Crystallography. (2014, August 19). First crystal structure of the C. difficile surface protein Cwp84. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2014/08/140819113006.htm
International Union of Crystallography. "First crystal structure of the C. difficile surface protein Cwp84." ScienceDaily. www.sciencedaily.com/releases/2014/08/140819113006.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com
Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins