Featured Research

from universities, journals, and other organizations

Small molecule acts as on-off switch for nature's antibiotic factory: Tells Streptomyces to either veg out or get busy

Date:
August 28, 2014
Source:
Duke University
Summary:
Biochemists have identified the developmental on-off switch for Streptomyces, a group of soil microbes that produce more than two-thirds of the world's naturally derived antibiotic medicines. Their hope now would be to see whether it is possible to manipulate this switch to make nature's antibiotic factory more efficient.

The soil bacteria Streptomyces form filamentous branches that extend into the air to create spiraling towers of spores. Duke researchers have discovered the switch that can turn off sporulation and turn on antibiotic production.
Credit: CDC

Scientists have identified the developmental on-off switch for Streptomyces, a group of soil microbes that produce more than two-thirds of the world's naturally derived antibiotic medicines.

Their hope now would be to see whether it is possible to manipulate this switch to make nature's antibiotic factory more efficient.

The study, appearing August 28 in Cell, found that a unique interaction between a small molecule called cyclic-di-GMP and a larger protein called BldD ultimately controls whether a bacterium spends its time in a vegetative state or gets busy making antibiotics.

Researchers found that the small molecule assembles into a sort of molecular glue, connecting two copies of BldD as a cohesive unit that can regulate development in the Gram-positive bacteria Streptomyces.

"For decades, scientists have been wondering what flips the developmental switch in Streptomyces to turn off normal growth and to begin the unusual process of multicellular differentiation in which it generates antibiotics," said Maria A. Schumacher, Ph.D., an associate professor of biochemistry at the Duke University School of Medicine. "Now we not only know that cyclic-di-GMP is responsible, but we also know exactly how it interacts with the protein BldD to activate its function."

Streptomyces has a complex life cycle with two distinct phases: the dividing, vegetative phase and a distinct phase in which the bacteria form a network of thread-like filaments to chew up organic debris and churn out antibiotics and other metabolites. At the end of this second phase, the bacteria form filamentous branches that extend into the air to create spiraling towers of spores.

In 1998 researchers discovered a gene that kept cultured Streptomyces bacteria from creating these spiraling towers of fuzz on their surface. They found that this gene, which they named BldD to reflect this "bald" appearance, also affected the production of antibiotics.

Subsequent studies have shown that BldD is a special protein called a transcription factor, a type of master regulator that binds DNA and turns on or off more than a hundred genes to control biological processes like sporulation. But in more than a decade of investigation, no one had been able to identify the brains behind the operation, the molecule that ultimately controls this master regulator in Streptomyces.

Then scientists at the John Innes Centre in the United Kingdom -- where much of the research on Streptomyces began -- discovered that the small molecule cyclic-di-GMP is generated by several transcription factors regulated by BldD. The researchers did a quick test to see if this small molecule would itself bind BldD, and were amazed to find that it did. They contacted longtime collaborators Schumacher and Richard G. Brennan Ph.D. at Duke to see if they could take a closer look at this important interaction.

The Duke team used a tool known as x-ray crystallography to create an atomic-level three-dimensional structure of the BldD-(cyclic-di-GMP) complex.

BldD normally exists as a single molecule or monomer, but when it is time to bind DNA and suppress sporulation, it teams up with another copy of itself to do the job. The 3D structure built by the researchers revealed that these two copies of BldD never physically touch, and instead are stuck together by four copies of cyclic-di-GMP.

"We have looked through the protein databank and scoured our memories, but this finding appears to be unique," said Brennan, who is a professor and chair of biochemistry at Duke University School of Medicine. "We have never seen a type of structure before where two monomers become a functional dimer, with no direct interaction between them except a kind of small-molecule glue."

To confirm their findings, Schumacher determined several crystal structures from different flavors of bacteria (S. venezuelae and S. coelicolor) and came up with the same unusual result every time.

Now that the researchers know how cyclic-di-GMP and BldD can become glued together to turn off sporulation and turn on antibiotic production, they would like to know how the complex can become unglued again to flip the switch the other way.

The research was supported by a Long Term EMBO Fellowship (ALTF 693-2012), a Leopoldina Postdoctoral Fellowship, the Biotechnology and Biological Sciences Research Council (BB/H006125/1), the MET Institute Strategic Programme, and the Duke University School of Medicine.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Natalia Tschowri, MariaA. Schumacher, Susan Schlimpert, Nagababu Chinnam, KimC. Findlay, RichardG. Brennan, MarkJ. Buttner. Tetrameric c-di-GMP Mediates Effective Transcription Factor Dimerization to Control Streptomyces Development. Cell, 2014; 158 (5): 1136 DOI: 10.1016/j.cell.2014.07.022

Cite This Page:

Duke University. "Small molecule acts as on-off switch for nature's antibiotic factory: Tells Streptomyces to either veg out or get busy." ScienceDaily. ScienceDaily, 28 August 2014. <www.sciencedaily.com/releases/2014/08/140828135855.htm>.
Duke University. (2014, August 28). Small molecule acts as on-off switch for nature's antibiotic factory: Tells Streptomyces to either veg out or get busy. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2014/08/140828135855.htm
Duke University. "Small molecule acts as on-off switch for nature's antibiotic factory: Tells Streptomyces to either veg out or get busy." ScienceDaily. www.sciencedaily.com/releases/2014/08/140828135855.htm (accessed September 23, 2014).

Share This



More Plants & Animals News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cat Lovers Flock to Los Angeles

Cat Lovers Flock to Los Angeles

AFP (Sep. 22, 2014) The best funny internet cat videos are honoured at LA's Feline Film Festival. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
Washed-Up 'Alien Hairballs' Are Actually Algae

Washed-Up 'Alien Hairballs' Are Actually Algae

Newsy (Sep. 22, 2014) Green balls of algae washed up on Sydney, Australia's Dee Why Beach. Video provided by Newsy
Powered by NewsLook.com
Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins