Featured Research

from universities, journals, and other organizations

Key to first cell differentiation in mammals found

Date:
September 2, 2014
Source:
Centro Nacional de Investigaciones Cardiovasculares
Summary:
The key to the appearance of the first differentiated cell types in mammalian embryos has been uncovered by researchers. This differentiation event occurs even before the formation of the embryo proper, during the developmental stage known as the blastocyst.

The CNIC scientists, working with investigators at the Hospital for Sick Children in Toronto, the Sloan-Kettering Institute and the University of Kumamoto, have identified a regulatory element implicated in the function of a gene that plays a crucial role in the first cell differentiation event, which gives rise to the embryonic and extraembryonic cell lineages. The discovery is published in Developmental Cell.

The blastocyst is an embryonic structure present at early stages of the development of mammals, before implantation in the lining of the mother's uterus. It is composed of between 64 and 100 cells that surround a central cavity. Before the embryo reaches this stage all its cells are equivalent and totipotent, meaning that each cell is capable of giving rise to all embryonic and extraembryonic cell types.

But the formation of the blastocyst implies the first distinction between cell types. Structural defects that can arise during this process impede development and are one of the causes of spontaneous abortion.

This first lineage decision in the blastocyst establishes two cell populations: the trophectoderm -- the origin of the future placenta -- and the inner cell mass, the origin of the rest of the embryo and the fully developed organism.

Dr. Miguel Manzanares, lead author on the study, explains that "This segregation is crucial because on the one hand it is through this process that the embryonic cells lose their totipotency and on the other it generates the trophectoderm, a tissue characteristic of mammalian development. The cells of this tissue are called trophoblasts, which, after further differentiation into various cell types, go on to form the placenta and the amniotic membranes. During the segregation of the trophectoderm from the inner cell mass an essential role is played by the gene Cdx2.

The CNIC team -- Dr. Manzanares, first author Teresa Rayón, Sergio Menchero and the group led by Dr. José Luis de la Pompa, together with their partners at other institutions -- have identified a regulatory element -- a specific DNA sequence -- that controls the function of Cdx2.

Teresa Rayón emphasizes that "The element we discovered directs the restricted expression of a reporter gene in the trophectoderm, and is essential for Cdx2 activation and the acquisition of its function."

The team also discovered that the formation of the trophectoderm involves signaling from the membrane receptor Notch, which acts together with the product of Tead4, a gene recently implicated in this process. The researchers found that Notch and Tead4 proteins act in parallel on the Cdx2 regulatory element identified in the study. This co-regulation demonstrates the existence of a compensatory mechanism at this early stage of development that favors the viability of the embryo and ensures its correct development.

"The important features of the early specification of the trophectoderm are conserved between humans and mice, so knowledge gained about lineage formation in mice will improve our understanding of what happens in humans and help to assisted reproduction technology," Dr. Manzanares points out, concluding that the findings will also "facilitate research into the genetic influences on effective and aberrant early trophoblast differentiation."


Story Source:

The above story is based on materials provided by Centro Nacional de Investigaciones Cardiovasculares. Note: Materials may be edited for content and length.


Journal Reference:

  1. Teresa Rayon, Sergio Menchero, Andres Nieto, Panagiotis Xenopoulos, Miguel Crespo, Katie Cockburn, Susana Cañon, Hiroshi Sasaki, Anna-Katerina Hadjantonakis, Jose Luis de la Pompa, Janet Rossant, Miguel Manzanares. Notch and Hippo Converge on Cdx2 to Specify the Trophectoderm Lineage in the Mouse Blastocyst. Developmental Cell, 2014; 30 (4): 410 DOI: 10.1016/j.devcel.2014.06.019

Cite This Page:

Centro Nacional de Investigaciones Cardiovasculares. "Key to first cell differentiation in mammals found." ScienceDaily. ScienceDaily, 2 September 2014. <www.sciencedaily.com/releases/2014/09/140902114922.htm>.
Centro Nacional de Investigaciones Cardiovasculares. (2014, September 2). Key to first cell differentiation in mammals found. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/09/140902114922.htm
Centro Nacional de Investigaciones Cardiovasculares. "Key to first cell differentiation in mammals found." ScienceDaily. www.sciencedaily.com/releases/2014/09/140902114922.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) — An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins