New! Sign up for our free email newsletter.
Science News
from research organizations

Scientists Attach Genes To Mini-chromosomes In Maize

Date:
May 16, 2007
Source:
University of Missouri-Columbia
Summary:
A team of scientists has discovered a way to create engineered mini-chromosomes in maize and attach genes to those mini-chromosomes. This discovery opens new possibilities for the development of crops that are multiply resistant to viruses, insects, fungi, bacteria and herbicides, and for the development of proteins and metabolites that can be used to treat human illnesses.
Share:
FULL STORY

A team of scientists at the University of Missouri-Columbia has discovered a way to create engineered mini-chromosomes in maize and attach genes to those mini-chromosomes. This discovery opens new possibilities for the development of crops that are multiply resistant to viruses, insects, fungi, bacteria and herbicides, and for the development of proteins and metabolites that can be used to treat human illnesses.

In a paper published in the Proceedings of the National Academy of Sciences (PNAS), Weichang Yu, Fangpu Han, Zhi Gao, Juan M. Vega and James A. Birchler built on a previous MU discovery about the creation of mini-chromosomes to demonstrate that genes could be stacked on the mini-chromosomes.

"This has been sought for a long time in the plant world, and it should open many new avenues. If we can do this in plants, many advances could be done in agriculture that would not otherwise be possible, from improved crops to inexpensive pharmaceutical production to other applications in biotechnology," said Birchler, professor of biological sciences in the MU College of Arts and Science.

A mini-chromosome is an extremely small version of a chromosome, the threadlike linear strand of DNA and associated proteins that carry genes and functions in the transmission of hereditary information. Whereas a chromosome is made of both centromeres and telomeres with much intervening DNA, a mini-chromosome contains only centromeres and telomeres, the end section of a chromosome, with little else. However, mini-chromosomes have the ability to accept the addition of new genes in subsequent experiments.

Birchler said there have been unsuccessful efforts to create artificial chromosomes in plants but this is the first time engineered mini-chromosomes have been made. Mini-chromosomes are able to function in many of the same ways as chromosomes but allow for genes to be stacked on them. Although other forms of genetic modification in plants are currently utilized, the new mini-chromosomes are particularly useful because they allow scientists to add numerous genes onto one mini-chromosome and manipulate those genes easily because they are all in one place, Birchler said. Genetic modification with traditional methods is more complicated because scientists have little control over where the genes are located in the chromosomes and cannot stack multiple genes on a separate chromosome independent of the others.

By stacking genes on mini-chromosomes, scientists could create crops that have multiple beneficial traits, such as resistance to drought, certain viruses and insects, or other stresses. In addition, mini-chromosomes could be used for the inexpensive production of multiple foreign proteins and metabolites useful for medical purposes. Because of their protein-rich composition, a part of the maize kernels (called an endosperm) can be used to grow animal proteins and human antibodies that treat diseases and disease symptoms. Mini-chromosomes could enable new and better production of these foreign proteins and antibodies. In addition, scientists also may be able to use them to develop plants better suited for biofuel production.

"The technique used to create our engineered mini-chromosomes should be transferable to other plant species," Birchler said.

He said he hopes that he and other scientists can use the technique to create mini-chromosomes in other plant varieties and produce more resistant plant strains, develop more medically useful proteins and metabolites, and study how chromosomes function.


Story Source:

Materials provided by University of Missouri-Columbia. Note: Content may be edited for style and length.


Cite This Page:

University of Missouri-Columbia. "Scientists Attach Genes To Mini-chromosomes In Maize." ScienceDaily. ScienceDaily, 16 May 2007. <www.sciencedaily.com/releases/2007/05/070514170827.htm>.
University of Missouri-Columbia. (2007, May 16). Scientists Attach Genes To Mini-chromosomes In Maize. ScienceDaily. Retrieved April 19, 2024 from www.sciencedaily.com/releases/2007/05/070514170827.htm
University of Missouri-Columbia. "Scientists Attach Genes To Mini-chromosomes In Maize." ScienceDaily. www.sciencedaily.com/releases/2007/05/070514170827.htm (accessed April 19, 2024).

Explore More

from ScienceDaily

RELATED STORIES