NEW: Find great deals on the latest gadgets and more in the ScienceDaily Store!
Science News
from research organizations

Butterfly wings inspire design of water-repellent surface

December 7, 2011
American Institute of Physics
Researchers mimic the many-layered nanostructure of blue mountain swallowtail wings to make a silicon wafer that traps both air and light.

The brilliant blue wings of the mountain swallowtail (Papilio ulysse) easily shed water because of the way ultra-tiny structures in the butterfly's wings trap air and create a cushion between water and wing. Human engineers would like to create similarly water repellent surfaces, but past attempts at artificial air traps tended to lose their contents over time due to external perturbations.

Now an international team of researchers from Sweden, the United States, and Korea has taken advantage of what might normally be considered defects in the nanomanufacturing process to create a multilayered silicon structure that traps air and holds it for longer than one year.

The researchers used an etching process to carve out micro-scale pores and sculpt tiny cones from the silicon. The team found that features of the resulting structure that might usually be considered defects, such as undercuts beneath the etching mask and scalloped surfaces, actually improved the water repellent properties of the silicon by creating a multilayered hierarchy of air traps. The intricate structure of pores, cones, bumps, and grooves also succeeded in trapping light, almost perfectly absorbing wavelengths just above the visible range.

The biologically inspired surface, described in the AIP's journal Applied Physics Letters, could find uses in electro-optical devices, infrared imaging detectors, or chemical sensors.

Story Source:

Materials provided by American Institute of Physics. Note: Content may be edited for style and length.

Journal Reference:

  1. Sang H. Yun, Hyung-Seok Lee, Young Ha Kwon, Mats Göthelid, Sang Mo Koo, Lars Wagberg, Ulf O. Karlsson, Jan Linnros. Multifunctional silicon inspired by wing of male Papilio ulysses. Applied Physics Letters, 2011; (accepted)

Cite This Page:

American Institute of Physics. "Butterfly wings inspire design of water-repellent surface." ScienceDaily. ScienceDaily, 7 December 2011. <>.
American Institute of Physics. (2011, December 7). Butterfly wings inspire design of water-repellent surface. ScienceDaily. Retrieved February 22, 2017 from
American Institute of Physics. "Butterfly wings inspire design of water-repellent surface." ScienceDaily. (accessed February 22, 2017).