Science News
from research organizations

Great exaptations: Most traits emerge for no crucial reason, scientists find

July 15, 2013
Santa Fe Institute
By simulating changes in an organism's metabolism, scientists have now shown that most traits may emerge as non-crucial "exaptations" rather than as selection-advantageous adaptations.


Exactly how new traits emerge is a question that has long puzzled evolutionary biologists. While some adaptations develop to address a specific need, others (called "exaptations") develop as a by-product of another feature with minor or no function, and may acquire more or greater uses later. Feathers, for example, did not originate for flight but may have helped insulate or waterproof dinosaurs before helping birds fly.

How common such pre-adaptive traits are in relation to adaptive traits is unclear. Santa Fe Institute External Professor Andreas Wagner and colleague Aditya Barve, both evolutionary biologists at the University of Zurich, decided to get a systematic handle on how traits originate by studying all the chemical reactions taking place in an organism's metabolism.

Starting with the metabolism of an E. coli that can survive on glucose as its sole carbon source, they subjected the complex metabolic chemical process to a "random walk" through the set of all possible metabolisms, adding one reaction and deleting another from it with each step. They kept constant the total number of reactions and the bacterium's ability to survive on glucose alone, but allowed everything else to change. Every few thousand steps they analyzed the altered metabolism's reactions.

They found that most metabolisms were viable on about five other carbon sources -- sugars, building blocks of DNA or RNA, or proteins -- that are naturally common but chemically distinct compounds. To be certain that viability on these other carbon sources wasn't a natural consequence of viability on glucose, they tested metabolisms starting with viability on 49 other carbon sources, and each time found that exaptations emerged allowing the metabolism to survive on any one of several other carbon sources alone.

"We observed an incredible abundance of viability on carbon sources that these metabolisms were never even required to use," Wagner says.

By varying the number of reactions in a metabolic system, the team also found a relationship between the system's complexity (determined by number of reactions) and the extent of the exaptations, with larger networks having more of them.

The findings underscore the idea that traits we see now -- even complex ones, like color vision -- may have had neutral origins that sat latent for generations before spreading through populations, Wagner says.

"Our work shows that exaptations exceed adaptations several-fold," he says.

If exaptations are pervasive in evolution, he adds, it becomes difficult to distinguish adaptation from exaptation, and it could change the way evolutionary biologists think about selective advantage as the primary driver of natural selection.


Story Source:

Materials provided by Santa Fe Institute. Note: Content may be edited for style and length.

Journal Reference:

  1. Aditya Barve, Andreas Wagner. A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature, 2013; DOI: 10.1038/nature12301

Cite This Page:

Santa Fe Institute. "Great exaptations: Most traits emerge for no crucial reason, scientists find." ScienceDaily. ScienceDaily, 15 July 2013. <>.
Santa Fe Institute. (2013, July 15). Great exaptations: Most traits emerge for no crucial reason, scientists find. ScienceDaily. Retrieved September 30, 2023 from
Santa Fe Institute. "Great exaptations: Most traits emerge for no crucial reason, scientists find." ScienceDaily. (accessed September 30, 2023).

Explore More
from ScienceDaily