New! Sign up for our free email newsletter.
Science News
from research organizations

Plasmonic black metals: Breakthrough in solar energy research?

Date:
July 30, 2013
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
The use of plasmonic black metals could someday provide a pathway to more efficient photovoltaics -- the use of solar panels containing photovoltaic solar cells -- to improve solar energy harvesting, according to researchers.
Share:
FULL STORY

The use of plasmonic black metals could someday provide a pathway to more efficient photovoltaics (PV) -- the use of solar panels containing photovoltaic solar cells -- to improve solar energy harvesting, according to researchers at Lawrence Livermore National Laboratory (LLNL).

The LLNL Materials Engineering Division (MED) research team has made breakthroughs experimenting with black metals. These nanostructured metals are designed to have low reflectivity and high absorption of visible and infrared light. The MED research team recently published their black metals research results in a cover-page article in the May issue of Applied Physics Letters.

Authored by MED physicist and research team member Mihail Bora, the article details the work of the nanophotonics and plasmonics research team led by LLNL engineer Tiziana Bond.

It describes the team's concept of black metals, which are not classic metals but can be thought of as an extension of the black silicon concept. When silicon is treated in a certain way, such as being roughened at the nanoscale level, it traps light by multiple reflections, increasing its solar absorption. This gives the silicon a black surface that's able to better trap the full sun's wavelength spectrum.

Similarly, black metals are produced by some sort of random nanostructuring -- either in gold or silver -- without guaranteeing a full, reliable and repeatable full solar absorption. However, Bond's team developed a method to improve and control the absorption efficiency and basically turn the metals as black as they want, allowing them to increase, on demand, the absorption of a higher quantity of solar wavelengths. Her team built nanopillar structures that are trapping and absorbing all the relevant wavelengths of the entire solar spectrum.

"Our article was picked for the cover story of Applied Physics Letters because it represents cutting-edge work in the area of plasmonics, the broadband operation obtained with a clear design and its implication for the photovoltaic yield," Bond said.

This new LLNL technology could one day be used in the energy harvesting industry such as PV. By incorporating metallic nanostructures with strong coupling of incident light, broad spectral and angular coverage, the LLNL team is providing a path for more efficient photovoltaics and thermovoltaics (a form of energy collection) by means of plasmon-exciton conversion, according to Bond and Bora.


Story Source:

Materials provided by DOE/Lawrence Livermore National Laboratory. Note: Content may be edited for style and length.


Journal Reference:

  1. Mihail Bora, Elaine M. Behymer, Dietrich A. Dehlinger, Jerald A. Britten, Cindy C. Larson, Allan S. P. Chang, Keiko Munechika, Hoang T. Nguyen, Tiziana C. Bond. Plasmonic black metals in resonant nanocavities. Applied Physics Letters, 2013; 102 (25): 251105 DOI: 10.1063/1.4802910

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Plasmonic black metals: Breakthrough in solar energy research?." ScienceDaily. ScienceDaily, 30 July 2013. <www.sciencedaily.com/releases/2013/07/130730132620.htm>.
DOE/Lawrence Livermore National Laboratory. (2013, July 30). Plasmonic black metals: Breakthrough in solar energy research?. ScienceDaily. Retrieved April 26, 2024 from www.sciencedaily.com/releases/2013/07/130730132620.htm
DOE/Lawrence Livermore National Laboratory. "Plasmonic black metals: Breakthrough in solar energy research?." ScienceDaily. www.sciencedaily.com/releases/2013/07/130730132620.htm (accessed April 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES