New! Sign up for our free email newsletter.
Science News
from research organizations

Physicists' findings improve quality of flexible, conductive, transparent glass

Date:
June 26, 2014
Source:
Binghamton University, State University of New York
Summary:
A new technique will improve the quality of flexible, conductive, transparent glass. Companies such as Sharp and LG already use a-IGZO in some high-end displays. It's also found in Apple's new iPad Air. But it has been difficult to maintain transparency and conductivity: In some samples, experts said, the material took on a brown or yellow tinge that would harm the display's performance. New research addresses the problem.
Share:
FULL STORY

A new technique developed by a Binghamton University physicist and his colleagues will improve the quality of flexible, conductive, transparent glass. (The sort that's needed for Minority Report-style giant computer displays.)

Louis Piper's research focuses on metal oxides, a class of materials that includes some of the best insulators as well as some of the best conductors in use today. He and his colleagues, writing this month in the journal Applied Physics Letters, suggest a new method for manufacturing amorphous indium gallium zinc oxide (a-IGZO), a ceramic that looks like glass and can behave like metal, or even like silicon.

Companies such as Sharp and LG already use a-IGZO in some high-end displays. It's also found in Apple's new iPad Air. But it has been difficult to maintain transparency and conductivity: In some samples, Piper said, the material took on a brown or yellow tinge that would harm the display's performance.

Using X-ray photoelectron spectroscopy to examine the chemical composition and electronic structure of a-IGZO, Piper and his colleagues tested 50 samples, each about a centimeter square and a micron thick. Previous studies have worked with fewer than five samples; this larger effort enabled the physicists to observe trends and conduct data analysis.

The surprising finding of these elaborate experiments? The deep subgap feature, which caused the discoloration in the material, is the result of local variation in oxygen coordination, rather than oxygen vacancies. "There was a lot of detective work," Piper said. "Several models had suggested missing oxygen played an important role, but our data showed otherwise."

Eventually, computations conducted by theorists at the University of Bath backed up the experimental findings from Binghamton: Oxygen that has too few positive metal ions surrounding it seems to be the cause of the subgap.

The team not only identified the reason for the subgap feature; it also developed a way to resolve the problem. Low-temperature annealing -- heating at 390 degrees Fahrenheit (a temperature you might use when baking a pizza) -- allows a-IGZO to retain its conductive properties but removes the subgap states, Piper said.

Bottom line, he said: "You don't have to sacrifice transparency for conductivity."

Creating a more reliable production process for a-IGZO will save electronics manufacturers money. It could also reduce energy use, as a fully transparent display can take advantage of ambient light and does not require as much backlighting.


Story Source:

Materials provided by Binghamton University, State University of New York. Original written by Rachel Coker. Note: Content may be edited for style and length.


Journal Reference:

  1. S. Sallis, K. T. Butler, N. F. Quackenbush, D. S. Williams, M. Junda, D. A. Fischer, J. C. Woicik, N. J. Podraza, B. E. White, A. Walsh, L. F. J. Piper. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen. Applied Physics Letters, 2014; 104 (23): 232108 DOI: 10.1063/1.4883257

Cite This Page:

Binghamton University, State University of New York. "Physicists' findings improve quality of flexible, conductive, transparent glass." ScienceDaily. ScienceDaily, 26 June 2014. <www.sciencedaily.com/releases/2014/06/140626121701.htm>.
Binghamton University, State University of New York. (2014, June 26). Physicists' findings improve quality of flexible, conductive, transparent glass. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2014/06/140626121701.htm
Binghamton University, State University of New York. "Physicists' findings improve quality of flexible, conductive, transparent glass." ScienceDaily. www.sciencedaily.com/releases/2014/06/140626121701.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

RELATED STORIES