Science News
from research organizations

Practice doesn't always make perfect (depending on your brain)

Study fuels nature versus debate

Date:
July 28, 2015
Source:
McGill University
Summary:
How do you get to Carnegie Hall? New research on the brain's capacity to learn suggests there's more to it than the adage that 'practice makes perfect.' A music-training study has found evidence to distinguish the parts of the brain that account for individual talent from the parts that are activated through training.
Share:
FULL STORY

The research involved brain imaging studies of 15 young adults with little or no musical background who were scanned before and after they underwent six weeks of musical training (Stock image).
Credit: © Wouter Tolenaars / Fotolia

How do you get to Carnegie Hall? New research on the brain's capacity to learn suggests there's more to it than the adage that "practise makes perfect." A music-training study by scientists at the Montreal Neurological Institute and Hospital -The Neuro, at McGill University and colleagues in Germany found evidence to distinguish the parts of the brain that account for individual talent from the parts that are activated through training.

The research involved brain imaging studies of 15 young adults with little or no musical background who were scanned before and after they underwent six weeks of musical training. Participants were required to learn simple piano pieces. Brain activity in certain areas changed after learning, indicating the effect of training. But the activity in a different set of brain structures, measured before the training session had started, predicted which test subjects would learn quickly or slowly.

"Predisposition plays an important role for auditory-motor learning that can be clearly distinguished from training-induced plasticity," says Dr. Robert Zatorre, a cognitive neuroscientist at The Neuro who co-directs Montreal's International Laboratory for Brain, Music and Sound Research (BRAMS) and is lead author of the study in Cerebral Cortex. "Our findings pertain to the debate about the relative influence of 'nature or nurture,' but also have potential practical relevance for medicine and education."

The research could help to create custom-made interventions for students and for neurological patients based on their predisposition and needs.

Future cognitive neuroscience studies will explore the extent to which individual differences in predisposition are a result of brain plasticity due to previous experiences and to people's genetics.


Story Source:

Materials provided by McGill University. Note: Content may be edited for style and length.


Journal Reference:

  1. Sibylle C. Herholz, Emily B.J. Coffey, Christo Pantev, Robert J. Zatorre. Dissociation of Neural Networks for Predisposition and for Training-Related Plasticity in Auditory-Motor Learning. Cerebral Cortex, 2015; bhv138 DOI: 10.1093/cercor/bhv138

Cite This Page:

McGill University. "Practice doesn't always make perfect (depending on your brain): Study fuels nature versus debate." ScienceDaily. ScienceDaily, 28 July 2015. <www.sciencedaily.com/releases/2015/07/150728120307.htm>.
McGill University. (2015, July 28). Practice doesn't always make perfect (depending on your brain): Study fuels nature versus debate. ScienceDaily. Retrieved May 26, 2017 from www.sciencedaily.com/releases/2015/07/150728120307.htm
McGill University. "Practice doesn't always make perfect (depending on your brain): Study fuels nature versus debate." ScienceDaily. www.sciencedaily.com/releases/2015/07/150728120307.htm (accessed May 26, 2017).

RELATED STORIES