Science News
from research organizations

Unexpected dynamics during partner exchange

Date:
November 30, 2015
Source:
University of Innsbruck
Summary:
Physicists have gained new insights into the dynamics of important chemical reactions using the combination of experiment and simulation. Nucleophilic substitution reactions play an important role in the formation of organic compounds. Here, a reactive species, usually a negatively charged atom or molecule, attacks an organic molecule in a way that this molecule repels a currently bonded partner in order to create the new bond. A team of physicists has proven an important influence of the repelled partner on the reaction dynamics.
Share:
FULL STORY

Physicists have gained new insights into the dynamics of important chemical reactions using the combination of experiment and simulation. Nucleophilic substitution reactions play an important role in the formation of organic compounds. Here, a reactive species, usually a negatively charged atom or molecule, attacks an organic molecule in a way that this molecule repels a currently bonded partner in order to create the new bond. A team of physicists led by Roland Wester have proved an important influence of the repelled partner on the reaction dynamics. These results are now published in the journal Nature Chemistry.

One of the most studied reactions in physical organic chemistry is the nucleophilic substitution reaction. This process plays an important role in organic synthesis such as in the production of vitamins or the formation of adrenaline in living cells. In the course of the reaction, an atom or a group of atoms bound to a molecule is exchanged by another binding partner. The attacking reaction partner, the nucleophile, possesses electrons that are ready to start a reaction. They allow it to form a new bond to a central carbon atom. This starts a substitution reaction and in its course the former partner is repelled and the molecule forms a new bond with the attacker.

For many decades chemists and physicists have sought to understand these processes on a fundamental atomic level and study them in laboratory experiments. Now Roland Wester and his research group at the Institute for Ion Physics and Applied Physics of the University of Innsbruck, Austria have managed to discover surprising new aspects in the dynamics of this reaction, which were previously considered to be well understood.

In cooperation with the theory group of Gabor Czako at the University of Szeged, Hungary, the combination of experiment and simulation allowed the unravelling of the subtle role played by the repelled partner, the leaving group, during the course of a substitution reaction. For this the researchers studied the substitution of negatively charged halogen atoms in the most basic organic molecular structure, the methyl group CH₃.

Wester and colleagues used two crossed beams that bring the neutral reactant molecules and the attacking halogen ions to collision. The ions that are repelled during the reaction were analysed with detectors that record the velocity of each reaction product. Jennifer Meyer, postdoctoral researcher in the Wester group and one of the co-authors of this article stresses the surprising observations: "In conjunction with the simulations for this reaction we found strong differences between the dynamics observed for different repelled partners." From this it could be deduced how much the halogen ion is able to influence the neutral molecule prior to the substitution, either by orienting it or by exciting internal vibrational modes. Overall, the initial partner influences, in an unexpectedly marked way, if and how the attacking ion can break up an established bond.


Story Source:

Materials provided by University of Innsbruck. Note: Content may be edited for style and length.


Journal Reference:

  1. Martin Stei, Eduardo Carrascosa, Martin A. Kainz, Aditya H. Kelkar, Jennifer Meyer, István Szabó, Gábor Czakó, Roland Wester. Influence of the leaving group on the dynamics of a gas-phase SN2 reaction. Nature Chemistry, 2015; DOI: 10.1038/nchem.2400

Cite This Page:

University of Innsbruck. "Unexpected dynamics during partner exchange." ScienceDaily. ScienceDaily, 30 November 2015. <www.sciencedaily.com/releases/2015/11/151130125014.htm>.
University of Innsbruck. (2015, November 30). Unexpected dynamics during partner exchange. ScienceDaily. Retrieved May 23, 2017 from www.sciencedaily.com/releases/2015/11/151130125014.htm
University of Innsbruck. "Unexpected dynamics during partner exchange." ScienceDaily. www.sciencedaily.com/releases/2015/11/151130125014.htm (accessed May 23, 2017).

RELATED STORIES