New! Sign up for our free email newsletter.
Science News
from research organizations

Watching how plants make oxygen

Date:
November 21, 2016
Source:
Uppsala University
Summary:
Researchers have made significant progress in visualizing how plants split water to produce oxygen, thanks to the development of new ways to grow microcrystals of photosystem II -- the protein complex that in plants is responsible for producing oxygen from water using sunlight.
Share:
FULL STORY

In a new study, researchers have made significant progress in visualizing how plants split water to produce oxygen. The results are published in Nature.

For mitigating climate change plants play a crucial role: they use sunlight to remove the greenhouse gas carbon dioxide from the atmosphere and convert it into biomass. By splitting water, they also produce in this process the oxygen we breathe. This latter process may turn out to be even more important for saving the climate: if understood completely, it will lead researchers to the development of devices that produce clean hydrogen fuel from solar energy and water, with much higher efficiency than plants can produce biomass.

In collaboration with an international team of researchers, professor Johannes Messinger, who recently joint the Molecular Biomimetics Program at Uppsala University, has now found a way how to visualize this reaction at high resolution using the X-ray free-electron laser at SLAC National Accelerator Laboratory and Stanford University. For this work the research consortium developed new ways to grow microcrystals of photosystem II, the protein complex that in plants is responsible for producing oxygen from water using sunlight. These microcrystals were then placed on a conveyor belt using technology akin to ink-jet printing. On the belt, the crystals were illuminated with laser flashes of green light, to start the water splitting reaction cycle. The structure of these activated states were subsequently visualized by hitting the crystals at the end of the belt with ultrafast X-ray pulses.

"This work is a breakthrough. It paves the way to study, step-by-step, how an oxygen molecule is formed from two water molecules," says Johannes Messinger, who is one of the lead authors of this study.

In the report, the authors were able to resolve structural differences between two of the states in photosystem II that are involved in water splitting. To reach this goal, research teams from the Lawrence Berkeley National Laboratory, University of Stanford, Humboldt University Berlin, Umeå University and Uppsala University collaborated for five years.

"We are now all set up to tackle the final mysteries of how plants make oxygen -- a dream has come true," says Johannes Messinger.


Story Source:

Materials provided by Uppsala University. Note: Content may be edited for style and length.


Journal Reference:

  1. Iris D. Young, Mohamed Ibrahim, Ruchira Chatterjee, Sheraz Gul, Franklin D. Fuller, Sergey Koroidov, Aaron S. Brewster, Rosalie Tran, Roberto Alonso-Mori, Thomas Kroll, Tara Michels-Clark, Hartawan Laksmono, Raymond G. Sierra, Claudiu A. Stan, Rana Hussein, Miao Zhang, Lacey Douthit, Markus Kubin, Casper de Lichtenberg, Long Vo Pham, Håkan Nilsson, Mun Hon Cheah, Dmitriy Shevela, Claudio Saracini, Mackenzie A. Bean, Ina Seuffert, Dimosthenis Sokaras, Tsu-Chien Weng, Ernest Pastor, Clemens Weninger, Thomas Fransson, Louise Lassalle, Philipp Bräuer, Pierre Aller, Peter T. Docker, Babak Andi, Allen M. Orville, James M. Glownia, Silke Nelson, Marcin Sikorski, Diling Zhu, Mark S. Hunter, Thomas J. Lane, Andy Aquila, Jason E. Koglin, Joseph Robinson, Mengning Liang, Sébastien Boutet, Artem Y. Lyubimov, Monarin Uervirojnangkoorn, Nigel W. Moriarty, Dorothee Liebschner, Pavel V. Afonine, David G. Waterman, Gwyndaf Evans, Philippe Wernet, Holger Dobbek, William I. Weis, Axel T. Brunger, Petrus H. Zwart, Paul D. Adams, Athina Zouni, Johannes Messinger, Uwe Bergmann, Nicholas K. Sauter, Jan Kern, Vittal K. Yachandra, Junko Yano. Structure of photosystem II and substrate binding at room temperature. Nature, 2016; DOI: 10.1038/nature20161

Cite This Page:

Uppsala University. "Watching how plants make oxygen." ScienceDaily. ScienceDaily, 21 November 2016. <www.sciencedaily.com/releases/2016/11/161121112258.htm>.
Uppsala University. (2016, November 21). Watching how plants make oxygen. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2016/11/161121112258.htm
Uppsala University. "Watching how plants make oxygen." ScienceDaily. www.sciencedaily.com/releases/2016/11/161121112258.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

MORE COVERAGE

RELATED STORIES