Science News
from research organizations

X-ray microscope optics resolve 50-nm features while eliminating chromatic aberrations

Date:
May 2, 2017
Source:
Osaka University
Summary:
X-ray microscopes are commonly used in combination with full-field imaging techniques in spectromicroscopy applications, where they allow the chemical structures of materials to be analyzed and visualized simultaneously. However, the performance of these microscopes is often affected by problems with chromatic aberrations, and previous solutions to the problem have often proved difficult to manufacture and implement. Now a team has developed an optical system for use in full-field X-ray microscopes that offers a more practical way to overcome the chromatic aberration problem.
Share:
FULL STORY

Elemental mapping using XAFS imaging. Zinc and tangsten particles were observed. Scale bar: 2micron.
Credit: Image courtesy of Osaka University

X-ray microscopes are commonly used in combination with full-field imaging techniques in spectromicroscopy applications, where they allow the chemical structures of materials to be analyzed and visualized simultaneously. However, the performance of these microscopes is often affected by problems with chromatic aberrations -- optical effects that limit the resolution or degree of fineness to which images of the material structures can be acquired -- and previous solutions to the problem have often proved difficult to manufacture and implement. A collaborative team led by researchers from Osaka University has therefore developed an optical system for use in full-field X-ray microscopes that offers a more practical way to overcome the chromatic aberration problem.

"We developed an imaging optical system based on use of two monolithic imaging mirrors," says Assistant Professor Satoshi Matsuyama from Osaka University's Graduate School of Engineering. "These mirrors have elliptical and hyperbolic shapes on a single substrate, and fixing of the relative positioning between the ellipse and the hyperbola can provide high image quality with lasting stability." Fabrication of this complex mirror system meant that existing manufacturing processes had to be modified, but the proposed mirror structures were produced with the required shapes to an accuracy of approximately 1 nm.

After the mirror structure was assembled using a specially developed alignment system, it was implemented in a full-field X-ray microscope system for performance testing at the SPring-8 synchrotron radiation facility. "The microscope was tested for its spatial resolution, the presence of chromatic aberrations, and long-term stability using a fine test pattern called a Siemens star and a photon energy of approximately 10 keV," explains Professor Kazuto Yamauchi of Osaka University's Center for Ultra-Precision Science and Technology. "We were able to clearly resolve 50-nm-sized features with high stability over a period of 20 hours without any chromatic aberrations."

The developed system was then applied in X-ray absorption fine structure spectromicroscopy experiments, and successfully identified both elements and chemical states in micron-sized specimens of zinc and tungsten. While the system will be subjected to further research to improve its performance towards the theoretical limit, it already shows considerable promise for use in a wide range of applications, including ultra-fast imaging with high-intensity X-rays and high-resolution full-field X-ray fluorescence imaging. This mirror structure may also find use in other systems, with potential applications that include focusing and imaging optics for synchrotron radiation X-rays and X-ray-free electron lasers.


Story Source:

Materials provided by Osaka University. Note: Content may be edited for style and length.


Journal Reference:

  1. Satoshi Matsuyama, Shuhei Yasuda, Jumpei Yamada, Hiromi Okada, Yoshiki Kohmura, Makina Yabashi, Tetsuya Ishikawa, Kazuto Yamauchi. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors. Scientific Reports, 2017; 7: 46358 DOI: 10.1038/srep46358

Cite This Page:

Osaka University. "X-ray microscope optics resolve 50-nm features while eliminating chromatic aberrations." ScienceDaily. ScienceDaily, 2 May 2017. <www.sciencedaily.com/releases/2017/05/170502084526.htm>.
Osaka University. (2017, May 2). X-ray microscope optics resolve 50-nm features while eliminating chromatic aberrations. ScienceDaily. Retrieved May 26, 2017 from www.sciencedaily.com/releases/2017/05/170502084526.htm
Osaka University. "X-ray microscope optics resolve 50-nm features while eliminating chromatic aberrations." ScienceDaily. www.sciencedaily.com/releases/2017/05/170502084526.htm (accessed May 26, 2017).

RELATED STORIES