New! Sign up for our free email newsletter.
Science News
from research organizations

Sensing interactions between molecules

Nanoscientists have developed an atomically defined probe tip with extraordinary stability which enables them to image molecular structures by atomic force microscopy

April 11, 2018
University of Münster
An experimental approach to visualize structures of organic molecules with exceptional resolution is reported by physicists and chemists.

In a recent study published in the scientific journal Nature Nanotechnology, physicists and chemists of the University of Münster (Germany) describe an experimental approach to visualising structures of organic molecules with exceptional resolution. The key to this newly developed microscopic method is the high stability of a particularly sharp and atomically defined probe tip.

The new method which can be used to image the structural and chemical properties of organic molecules with extreme precision was developed by physics researchers in the labs of the Center for Nanotechnology (CeNTech) at the University of Münster. The experiment is based on atomic force microscopy where sample surfaces are scanned with the apex of a needle-like probe. As the lead author of the study Dr. Harry Mönig explains: "Our special technique involves a copper-based probe tip which is passivated by a single oxygen atom at the tip termination." Here, passivation means that the oxygen atom reduces undesired interaction between the atoms of the tip and the atoms in the molecules under investigation. This greatly increases the imaging resolution. In contrast to previous methods, the bond between the oxygen atom at the tip and copper base is particularly strong, thereby reducing imaging artefacts to a minimum.

Prof. Dr. Harald Fuchs, co-author of the study, emphasises: "The potential of the new method is considerable as it allows us to investigate bonding structures of molecular networks with exceptional accuracy." Providing fundamental insights into the interactions between molecules is important for the development of new so-called nanostructured materials. Such materials take advantage of the fact that very small deviations on the nanoscale can significantly alter the material properties. The difference between diamonds and graphite is a well-known example of such nanoscale deviations. Although both consist of pure carbon, diamond is extremely hard whereas graphite is comparatively soft. Only the structural arrangement and bonding between the carbon atoms are different.

Story Source:

Materials provided by University of Münster. Note: Content may be edited for style and length.

Journal Reference:

  1. Harry Mönig, Saeed Amirjalayer, Alexander Timmer, Zhixin Hu, Lacheng Liu, Oscar Díaz Arado, Marvin Cnudde, Cristian Alejandro Strassert, Wei Ji, Michael Rohlfing, Harald Fuchs. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nature Nanotechnology, 2018; DOI: 10.1038/s41565-018-0104-4

Cite This Page:

University of Münster. "Sensing interactions between molecules." ScienceDaily. ScienceDaily, 11 April 2018. <>.
University of Münster. (2018, April 11). Sensing interactions between molecules. ScienceDaily. Retrieved July 23, 2024 from
University of Münster. "Sensing interactions between molecules." ScienceDaily. (accessed July 23, 2024).

Explore More

from ScienceDaily