New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Turbulence

In fluid dynamics, turbulence or turbulent flow is a flow regime characterized by chaotic, stochastic property changes. This includes low momentum diffusion, high momentum convection, and rapid variation of pressure and velocity in space and time. Flow that is not turbulent is called laminar flow. The (dimensionless) Reynolds number characterizes whether flow conditions lead to laminar or turbulent flow; e.g. for pipe flow, a Reynolds number above about 2300 will be turbulent. Consider the flow of water over a simple smooth object, such as a sphere. At very low speeds the flow is laminar, i.e., the flow is smooth (though it may involve vortices on a large scale). As the speed increases, at some point the transition is made to turbulent ("chaotic") flow. In turbulent flow, unsteady vortices appear on many scales and interact with each other. Drag due to boundary layer skin friction increases. The structure and location of boundary layer separation often changes, sometimes resulting in a reduction of overall drag. Because laminar-turbulent transition is governed by Reynolds number, the same transition occurs if the size of the object is gradually increased, or the viscosity of the fluid is decreased, or if the density of the fluid is increased.

Related Stories
 


Matter & Energy News

February 5, 2026

A new metasurface design lets light of different spins bend, focus, and behave independently—while staying sharp across many colors. The trick combines two geometric phase effects so each spin channel can be tuned without interfering with the ...
A new optical device allows researchers to generate and switch between two stable, donut-shaped light patterns called skyrmions. These light vortices hold their shape even when disturbed, making them promising for wireless data transmission. Using a ...
Researchers have found that manganese, an abundant and inexpensive metal, can be used to efficiently convert carbon dioxide into formate, a potential hydrogen source for fuel cells. The key was a clever redesign that made the catalyst last far ...
A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature optical cavities that efficiently collect light from individual atoms, allowing many qubits to be read at once. The team has already ...
Researchers have discovered a hidden quantum geometry inside materials that subtly steers electrons, echoing how gravity warps light in space. Once thought to exist only on paper, this effect has now been observed experimentally in a popular quantum ...
A strange, glowing form of matter called dusty plasma turns out to be incredibly sensitive to magnetic fields. Researchers found that even weak fields can change how tiny particles grow, simply by nudging electrons into new motions. In lab ...
Researchers have found a way to make ordinary aluminum tubes float indefinitely, even when submerged for long periods or punched full of holes. By engineering the metal’s surface to repel water, the tubes trap air inside and refuse to sink, even ...
Order doesn’t always form perfectly—and those imperfections can be surprisingly powerful. In materials like liquid crystals, tiny “defects” emerge when symmetry breaks, shaping everything ...
Scientists have created a device that captures carbon dioxide and transforms it into a useful chemical in a single step. The new electrode works with realistic exhaust gases rather than requiring purified CO2. It converts the captured gas into ...
Physicists have discovered that hidden magnetic order plays a key role in the pseudogap, a puzzling state of matter that appears just before certain materials become superconductors. Using an ultra-cold quantum simulator, the team found that even ...
Researchers have demonstrated that quantum entanglement can link atoms across space to improve measurement accuracy. By splitting an entangled group of atoms into separate clouds, they were able to measure electromagnetic fields more precisely than ...
Researchers have developed a technique that allows them to carve complex three dimensional nanodevices directly from single crystals. To demonstrate its power, they sculpted microscopic helices from a magnetic material and found that the structures ...

Latest Headlines

updated 12:56 pm ET