Featured Research

from universities, journals, and other organizations

Homing In On Migrating Salmon

Date:
June 29, 1997
Source:
Dartmouth College
Summary:
Dartmouth researchers have found a novel means of determining the tributary where an adult salmon spent its early years before moving to the sea -- vital information for salmon conservation efforts worldwide. The study, which focused on Atlantic salmon in the Connecticut River, is reported in the current issue of the journal Nature.

Dartmouth researchers have found a novel means of determining the tributary where an adult salmon spent its early years before moving to the sea -- vital information for salmon conservation efforts worldwide. The study, which focused on Atlantic salmon in the Connecticut River, is reported in the current issue of the journal Nature.

Using a high precision isotope ratio measurement first developed by lunar scientists to analyze the geology of the moon, Dartmouth biologists Brian Kennedy and Carol Folt and geochemists Joel Blum and Page Chamberlain have shown that a unique isotope signature present in the water of a stream is incorporated into the bony structures of young salmon, or fry, soon after they begin to feed. This natural signal, derived from the geologic formations that underlie the rearing stream, can allow an adult salmon's origins to be traced with unprecedented accuracy.

Under natural conditions, anadromous or "sea-going" salmon are born in freshwater streams. One to five years later, as adolescents called smolts, they swim downstream from their freshwater habitats to the ocean where they spend up to three years growing and maturing. Then they return to their home stream to breed. Extraordinary navigators, salmon sometimes cross thousands of miles to return to the site where they were born.

Over the past century, dams on many rivers have stopped these natural migrations and have eliminated salmon from much of their historic range. Loss or degradation of habitat and changes in ocean climate also appear to be causing a reduction in salmon populations worldwide, and efforts to restore salmon to their native ranges are under way in many places.

As part of the restoration efforts along the Connecticut River, returning adult salmon are captured at the Holyoke dam and taken away to be bred in hatcheries. Millions of young are produced this way annually, hand-stocked into fresh water when they are fingerlings - about the size of a adult's thumb. "Even though it would be useful to know the home streams of migrating fish" and to know which streams produce the most successful fish "there is no practical method of marking and tracking fish on this large a scale," says Kennedy.

To address this problem, Dartmouth investigators set out to find a signal that could identify a fish with a particular stream. They chose the trace element strontium, which is dissolved in stream water in several different forms, or atomic weights, called isotopes. The proportion of different strontium isotopes in a stream is related to the composition of rocks and minerals found in the stream's watershed, giving the water in any stream a distinctive isotopic signature. The researchers proposed that this signature would be detected in the bones of salmon reared in that stream.

Applying a technique that measures the relative proportions of strontium isotopes (86Sr and 87Sr) the Dartmouth group discovered that within three months of being put into a tributary, salmon incorporated the isotopic signal of that tributary into their backbones and ear-stones (called otoliths). All but two of the 20 fish measured could be precisely matched to a home stream; both of the non-matching fish are believed to have traveled from a distant waterway and retained the isotopic signature of their home stream. Of the 10 sites that were studied, the scientists could distinguish eight unique isotope signatures, suggesting that this technique may be one solution to determining the stream origins of adult salmon.

"Our initial results are very promising," says Carol Folt, associate professor of biological sciences. "We are now looking at the use of additional isotopes, like nitrogen, to pinpoint salmon rearing origins with greater accuracy."

###


Story Source:

The above story is based on materials provided by Dartmouth College. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth College. "Homing In On Migrating Salmon." ScienceDaily. ScienceDaily, 29 June 1997. <www.sciencedaily.com/releases/1997/06/970629234900.htm>.
Dartmouth College. (1997, June 29). Homing In On Migrating Salmon. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/1997/06/970629234900.htm
Dartmouth College. "Homing In On Migrating Salmon." ScienceDaily. www.sciencedaily.com/releases/1997/06/970629234900.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins