Featured Research

from universities, journals, and other organizations

Wyoming Researchers Discover High-Performance Spider Silk Genes

Date:
February 10, 1998
Source:
University Of Wyoming
Summary:
Two University of Wyoming scientists have discovered a gene that produces the most highly elastic fiber from a spider's silk.

Two University of Wyoming scientists have discovered a gene that produces the most highly elastic fiber from a spider's silk.

Related Articles


Randy Lewis, professor, and Cheryl Hayashi, post doctoral researcher, in the UW College of Agriculture's Department of Molecular Biology, report the discovery of a new spider silk gene that codes for a flagelliform (long, whip-like) silk protein. Their discovery will be published this month in the Journal of Molecular Biology.

Silk produced from the newly-discovered gene is used as the core thread of an orb web's capture spiral and is the most highly elastic of spider silks, Lewis says. This elasticity is essential for prey capture by allowing the web to absorb the energy of a flying insect, entrapping it in the web. Lewis says the discovery, "helps unlock more of the spiders' secrets for spinning high-performance fibers."

This discovery is essential to the ongoing spider silk research at UW, Lewis says, which has included cloning the DNA of spider silk that can be used for a variety of industrial and medicinal uses. UW researchers were the first to clone proteins that comprise major ampullate silk, but little was known about the flagelliform silk protein until now.

Lewis and Hayashi's discovery of the new gene has revealed more than just the DNA or amino acid sequences of the flagelliform silk protein. The gene provides the first depiction of the amino-terminal (start of the protein) protein of a spider silk.

"This region is widely thought to be involved in the transport of newly synthesized proteins out of secretory cells," Lewis says. "This provides an additional clue to understanding how spiders are able to manufacture, store and then spin silk fibers -- processes that are currently under intense study by several laboratories across the country."

But what Lewis and Hayashi have discovered is that flagelliform silk protein is made of numerous copies of three distinct amino acid motifs.

"Spider silks can be envisioned as sets of amino acid motifs with each motif forming a different structure," Hayashi says. Flagelliform silk is built largely of the elastic-conferring module, she says. "It is not only the presence, but also the frequency of these modules that contributes to the properties of each silk. While flagelliform has at least 43 uninterrupted modules, dragline silk has at most nine consecutive units. The greater extensibility of the capture spiral can be attributed to its greater proportion of spring-like elastic modules." Lewis and Hayashi's research work is funded with a grant from the Army Research Office, and is the basis for a Small Business Innovative Research (SBIR) grant awarded to WyoBiGen, a company formed to commercialize research discoveries from Lewis' UW laboratory. WyoBiGen is a Laramie company created to commercialize artificial spider silks.

"The world-wide market for these fibers is likely to be in the hundreds of millions of dollars," Lewis says.

The SBIR program encourages small businesses to apply for funds that have been set aside for the critical start-up and development stages. The SBIR encourages the commercialization of technologies, products, or services, which, in turn, stimulate the U.S. economy. UW's Office of Research has hired Chris Busch, an expert in SBIR proposals, to work with small businesses in Wyoming.


Story Source:

The above story is based on materials provided by University Of Wyoming. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wyoming. "Wyoming Researchers Discover High-Performance Spider Silk Genes." ScienceDaily. ScienceDaily, 10 February 1998. <www.sciencedaily.com/releases/1998/02/980210071011.htm>.
University Of Wyoming. (1998, February 10). Wyoming Researchers Discover High-Performance Spider Silk Genes. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/1998/02/980210071011.htm
University Of Wyoming. "Wyoming Researchers Discover High-Performance Spider Silk Genes." ScienceDaily. www.sciencedaily.com/releases/1998/02/980210071011.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins