Featured Research

from universities, journals, and other organizations

Wyoming Researchers Discover High-Performance Spider Silk Genes

Date:
February 10, 1998
Source:
University Of Wyoming
Summary:
Two University of Wyoming scientists have discovered a gene that produces the most highly elastic fiber from a spider's silk.

Two University of Wyoming scientists have discovered a gene that produces the most highly elastic fiber from a spider's silk.

Randy Lewis, professor, and Cheryl Hayashi, post doctoral researcher, in the UW College of Agriculture's Department of Molecular Biology, report the discovery of a new spider silk gene that codes for a flagelliform (long, whip-like) silk protein. Their discovery will be published this month in the Journal of Molecular Biology.

Silk produced from the newly-discovered gene is used as the core thread of an orb web's capture spiral and is the most highly elastic of spider silks, Lewis says. This elasticity is essential for prey capture by allowing the web to absorb the energy of a flying insect, entrapping it in the web. Lewis says the discovery, "helps unlock more of the spiders' secrets for spinning high-performance fibers."

This discovery is essential to the ongoing spider silk research at UW, Lewis says, which has included cloning the DNA of spider silk that can be used for a variety of industrial and medicinal uses. UW researchers were the first to clone proteins that comprise major ampullate silk, but little was known about the flagelliform silk protein until now.

Lewis and Hayashi's discovery of the new gene has revealed more than just the DNA or amino acid sequences of the flagelliform silk protein. The gene provides the first depiction of the amino-terminal (start of the protein) protein of a spider silk.

"This region is widely thought to be involved in the transport of newly synthesized proteins out of secretory cells," Lewis says. "This provides an additional clue to understanding how spiders are able to manufacture, store and then spin silk fibers -- processes that are currently under intense study by several laboratories across the country."

But what Lewis and Hayashi have discovered is that flagelliform silk protein is made of numerous copies of three distinct amino acid motifs.

"Spider silks can be envisioned as sets of amino acid motifs with each motif forming a different structure," Hayashi says. Flagelliform silk is built largely of the elastic-conferring module, she says. "It is not only the presence, but also the frequency of these modules that contributes to the properties of each silk. While flagelliform has at least 43 uninterrupted modules, dragline silk has at most nine consecutive units. The greater extensibility of the capture spiral can be attributed to its greater proportion of spring-like elastic modules." Lewis and Hayashi's research work is funded with a grant from the Army Research Office, and is the basis for a Small Business Innovative Research (SBIR) grant awarded to WyoBiGen, a company formed to commercialize research discoveries from Lewis' UW laboratory. WyoBiGen is a Laramie company created to commercialize artificial spider silks.

"The world-wide market for these fibers is likely to be in the hundreds of millions of dollars," Lewis says.

The SBIR program encourages small businesses to apply for funds that have been set aside for the critical start-up and development stages. The SBIR encourages the commercialization of technologies, products, or services, which, in turn, stimulate the U.S. economy. UW's Office of Research has hired Chris Busch, an expert in SBIR proposals, to work with small businesses in Wyoming.


Story Source:

The above story is based on materials provided by University Of Wyoming. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wyoming. "Wyoming Researchers Discover High-Performance Spider Silk Genes." ScienceDaily. ScienceDaily, 10 February 1998. <www.sciencedaily.com/releases/1998/02/980210071011.htm>.
University Of Wyoming. (1998, February 10). Wyoming Researchers Discover High-Performance Spider Silk Genes. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/1998/02/980210071011.htm
University Of Wyoming. "Wyoming Researchers Discover High-Performance Spider Silk Genes." ScienceDaily. www.sciencedaily.com/releases/1998/02/980210071011.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins