Featured Research

from universities, journals, and other organizations

Wyoming Researchers Discover High-Performance Spider Silk Genes

Date:
February 10, 1998
Source:
University Of Wyoming
Summary:
Two University of Wyoming scientists have discovered a gene that produces the most highly elastic fiber from a spider's silk.

Two University of Wyoming scientists have discovered a gene that produces the most highly elastic fiber from a spider's silk.

Randy Lewis, professor, and Cheryl Hayashi, post doctoral researcher, in the UW College of Agriculture's Department of Molecular Biology, report the discovery of a new spider silk gene that codes for a flagelliform (long, whip-like) silk protein. Their discovery will be published this month in the Journal of Molecular Biology.

Silk produced from the newly-discovered gene is used as the core thread of an orb web's capture spiral and is the most highly elastic of spider silks, Lewis says. This elasticity is essential for prey capture by allowing the web to absorb the energy of a flying insect, entrapping it in the web. Lewis says the discovery, "helps unlock more of the spiders' secrets for spinning high-performance fibers."

This discovery is essential to the ongoing spider silk research at UW, Lewis says, which has included cloning the DNA of spider silk that can be used for a variety of industrial and medicinal uses. UW researchers were the first to clone proteins that comprise major ampullate silk, but little was known about the flagelliform silk protein until now.

Lewis and Hayashi's discovery of the new gene has revealed more than just the DNA or amino acid sequences of the flagelliform silk protein. The gene provides the first depiction of the amino-terminal (start of the protein) protein of a spider silk.

"This region is widely thought to be involved in the transport of newly synthesized proteins out of secretory cells," Lewis says. "This provides an additional clue to understanding how spiders are able to manufacture, store and then spin silk fibers -- processes that are currently under intense study by several laboratories across the country."

But what Lewis and Hayashi have discovered is that flagelliform silk protein is made of numerous copies of three distinct amino acid motifs.

"Spider silks can be envisioned as sets of amino acid motifs with each motif forming a different structure," Hayashi says. Flagelliform silk is built largely of the elastic-conferring module, she says. "It is not only the presence, but also the frequency of these modules that contributes to the properties of each silk. While flagelliform has at least 43 uninterrupted modules, dragline silk has at most nine consecutive units. The greater extensibility of the capture spiral can be attributed to its greater proportion of spring-like elastic modules." Lewis and Hayashi's research work is funded with a grant from the Army Research Office, and is the basis for a Small Business Innovative Research (SBIR) grant awarded to WyoBiGen, a company formed to commercialize research discoveries from Lewis' UW laboratory. WyoBiGen is a Laramie company created to commercialize artificial spider silks.

"The world-wide market for these fibers is likely to be in the hundreds of millions of dollars," Lewis says.

The SBIR program encourages small businesses to apply for funds that have been set aside for the critical start-up and development stages. The SBIR encourages the commercialization of technologies, products, or services, which, in turn, stimulate the U.S. economy. UW's Office of Research has hired Chris Busch, an expert in SBIR proposals, to work with small businesses in Wyoming.


Story Source:

The above story is based on materials provided by University Of Wyoming. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wyoming. "Wyoming Researchers Discover High-Performance Spider Silk Genes." ScienceDaily. ScienceDaily, 10 February 1998. <www.sciencedaily.com/releases/1998/02/980210071011.htm>.
University Of Wyoming. (1998, February 10). Wyoming Researchers Discover High-Performance Spider Silk Genes. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/1998/02/980210071011.htm
University Of Wyoming. "Wyoming Researchers Discover High-Performance Spider Silk Genes." ScienceDaily. www.sciencedaily.com/releases/1998/02/980210071011.htm (accessed September 15, 2014).

Share This



More Plants & Animals News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins