Featured Research

from universities, journals, and other organizations

In Animal Groups, Scientists See Patterns That Could Predict The Future

Date:
April 5, 1999
Source:
University Of Washington
Summary:
Like teenage boys hanging out on a street corner or fans cheering at a football game, animals behave differently when they're in a large group than they do when they're by themselves. The mechanics and patterns of nature's aggregations - schooling fish, flocking birds or swarming insects - provide valuable understanding for how such groups behave in, and survive, trying conditions, says a University of Washington zoologist.

Like teenage boys hanging out on a street corner or fans cheering at a football game, animals behave differently when they're in a large group than they do when they're by themselves.

The mechanics and patterns of nature's aggregations - schooling fish, flocking birds or swarming insects - provide valuable understanding for how such groups behave in, and survive, trying conditions, says a University of Washington zoologist.

What looks like a complex dance - an entire group suddenly changing directions or exploding and reforming - is actually a series of interactions between members of the group reacting to outside influences, says UW research assistant zoology professor Julia Parrish.

"There's a beautiful, aesthetic, very artistic side of it, but there's also a very mathematical and a very evolutionary aspect of animal aggregation," says Parrish, who writes about the complexity and patterns of animal aggregations in the April 2 issue of the journal Science. The paper, co-authored by Leah Edelstein-Keshet, an associate mathematics professor at the University of British Columbia, is part of a package of Science articles that explore the uses of complexity theory in natural and social science.

Pattern that emerges from aggregation is not limited to living systems, Parrish says. Snowflakes are a classic example. A single flake falls and is beautiful to look at. A stormful of flakes stick together and are carved by the wind into elaborate ridges and cornices. A winter's worth of flakes slip and slide and adjust to gravity, eventually producing an avalanche.

But animal aggregations have an evolutionary side.

How individuals react to outside influences can determine their own survival, as well as the survival of other group members. A herring that turns right when the school turns left faces certain death, Parrish says. But a herring that always cooperates with the group and never competes might die of starvation. Finding the threshold between cooperation and conflict eventually could provide scientists with the proverbial "canary in the coal mine" that allows humans to grasp the effects that their actions today will have on the world a century from now.

For example, a slight increase in water temperature because of global warming or a change in the ocean's chemical balance because of coastal pollution could alter the point at which schooling breaks down. Given the added stress of overfishing - humans consume 40 million to 50 million metric tons of schooling organisms each year - fish might end up in groups too small or too unfamiliar to survive. People wonder how massive flocks of passenger pigeons could ever have become extinct, Parrish says. As flocks got smaller, social interactions between the birds broke down. Hundreds or even thousands of birds were simply too few to form the flock sizes needed for the species to survive, she says.

Documenting how animal groups behave allows computer models to predict what will happen under various conditions in the future. A school of fish, for instance, can sense the approach of a predator and take evasive action. The group might scatter to avoid being consumed, though stragglers or individuals at the outer edges of the group might be devoured. But once the danger has passed, the group reforms. With a computer model, scientists can change the intensity of predation to see at what level the school is slow to reform or doesn't get back together at all.

Likewise, the models can assume conditions that don't yet exist - higher water temperature, for instance, or lower fish populations, possibly because of overfishing. The scientists study the models to see how fish react to those conditions.

"As resources are strained, it creates greater competition within the group. That has implications for all things human," Parrish says.

Humans are among the most social species and display all sorts of crowd behavior, no matter whether the individual knows the person in the next seat.

"With models, we may be able to predict the switch from standing ovation to rampage and adjust the outside influences accordingly," Parrish says. "Fish and humans are not so different. Fish have just had a lot longer to practice."


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "In Animal Groups, Scientists See Patterns That Could Predict The Future." ScienceDaily. ScienceDaily, 5 April 1999. <www.sciencedaily.com/releases/1999/04/990405070029.htm>.
University Of Washington. (1999, April 5). In Animal Groups, Scientists See Patterns That Could Predict The Future. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1999/04/990405070029.htm
University Of Washington. "In Animal Groups, Scientists See Patterns That Could Predict The Future." ScienceDaily. www.sciencedaily.com/releases/1999/04/990405070029.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins