Featured Research

from universities, journals, and other organizations

World's First Cloned Transgenic Goats Born

Date:
May 12, 1999
Source:
Louisiana State University
Summary:
The world's first cloned transgenic goats have been born as part of a research program conducted by LSU Agricultural Center and Genzyme Transgenic Corp. While much of the research was done at LSU in Baton Rouge, the goats made their appearance last fall at the Genzyme farm in Massachusetts.

By SARAH SUE GOLDSMITH, LSU News Service

BATON ROUGE -- The world's first cloned transgenic goats have been born as part of a research program conducted by LSU Agricultural Center and Genzyme Transgenic Corp. While much of the research was done at LSU in Baton Rouge, the goats made their appearance last fall at the Genzyme farm in Massachusetts.

LSU's resident transgenic goat is Millie. Though she's a million-dollar goat, she doesn't look any different from the other goats she hangs out with. She is different, though, because her milk contains a therapeutic protein that could be extracted to make a drug for patients undergoing coronary bypass surgery. The drug works in conjunction with heparin, which prevents blood from clotting.

The protein, anti-thrombin III (AT III), is now in the third phase of human clinical trials. Pending FDA approval during the next 12 months, the product could be on the market in the next couple of years.

"The technology used to clone the three Genzyme goats is one of the first applications of the nuclear transfer (cloning) procedure to produce transgenic goats for the pharmaceutical industry, said Richard Denniston, a researcher with the LSU Agricultural Center. An article in the May issue of Nature Biotechnology will announce the breakthrough. Researchers at Tufts University School of Veterinary Medicine also participated in the research.

LSU researchers have for the past six years carried a collaborative research program with Genzyme, which may become the first company to have a transgenic product on the market. "The FDA is being very careful because there's no precedent," Denniston said. Transgenics is the process of taking DNA from one species and implanting it into the genetic structure of another.

"Genzyme takes the gene for anti-thrombin III. The DNA is like a computer code. Once researchers identify the code, they can punch it into a DNA sequencer. Four different molecular building blocks of the DNA material are put in a vial, and a gene is built synthetically. Then you can make millions of copies of that," he explained.

The AT III gene is attached to a promoter gene, usually the gene for casein, a milk protein, and then microinjected into the male pronucleus of the newly fertilized egg. During the first cell divisions, the gene may become attached to the genetic material of the embryo. If this happens, the new gene, or transgene, will be incorporated into every cell of the developing goat embryo. The embryo is cultured and then transfered to the goat surrogate mother, and researchers wait for normal fetal development. If a female is produced, she will produce milk with the AT III protein, which can be extracted from the milk for pharmaceutical use.

"When you breed the AT III female offspring, 50 percent of her offspring will have this gene. Now you've got an animal that is very valuable. How do you produce these animals as quickly as possible? Genzyme does the molecular work. We are trying to develop technologies to reproduce these transgenic animals as quickly as possible," Denniston said.

"The idea of cloning arose in the past two years. Cloning is desirable because it would increase the efficiency rate. When you insert the AT III protein into 1,000 fertilized eggs and transfer 100 embryos, you can expect one transgenic offspring. There's a 50 percent chance of its being female," he said.

Denniston explained that there are three possible sources of genetic material for cloning. One source is the adult animal; this is how Dolly the sheep was produced. "That's what really made big news, taking a cell from an adult animal," he said. "Another source is the 16-32 cell-stage embryo, which was first done about 15 years ago. A third source is a developing fetus. In each case, the donor cell containing all the genetic material is fused with an enucleated egg (an egg that has had its genetic material removed). The resulting cloned embryo is then transferred into a recipient female that carries the clone to term."

The transgenic goat clones born from the joint LSU/Genzyme project were produced by taking fibroblast cells from a 30-day female goat fetus. These cells were grown in an incubator in media containing the gene for AT III. The growing cells then underwent a procedure called electroporation, which allows the gene to cross the cell membrane and enter the host cell's nucleus.

The resulting transgenic fibroblast cells were then fused with an enucleated egg. These cloned embryos were then transferred into a recipient goat. The result was three genetically identical transgenic female goats that can produce the valuable AT III protein in their milk. Using the cloning process in conjunction with transgenics improves the overall efficiency of producing transgenic animals, Denniston said.

Not all pregnancies are successful, but 100 percent of the births will be females with the gene for AT III," Denniston said.

The agricultural applications of this technique are widespread. For example, researchers could insert a gene for bruccilosis resistance and clone a herd of bruccilosis-resistant cattle.

"What we are doing for Genzyme is to test procedures or techniques and develop in vitro fertilization. Six years ago, nobody was doing in vitro fertilizationin goats. They asked us to, and we did," he said.

"The Massachusetts farm has more than 1,500 goats under the watchful eye of the FDA. They produce the gene in a lab in Framingham. They get a 30-day fetus, culture fiborblast cells, insert the gene for AT III into fiborblast cells, do nuclear transfer, send embryos to us, and we transfer them into recipients."

"The market for AT III is $200 million. That amount of protein can be produced by fewer than 100 goats. Even with the cost being a half to $1 millon per animal, the potential earnings from the pharmaceutical product are enormous," the LSU researcher said. Genzyme has received a patent on the protein.

It is cheaper to produce transgenic goats than cows; the goat's gestation period is shorter (5 months to a cow's 9 months), and the protein is not required in huge quantities, Denniston said.

LSU's contract with Genzyme has brought LSU approximately $850,000 in research funds, and LSU's reproductive physiology laboratory will continue working with the nuclear transfer process as a tool for pharmaceuticals, agricultural applications and propagation of endangered species.


Story Source:

The above story is based on materials provided by Louisiana State University. Note: Materials may be edited for content and length.


Cite This Page:

Louisiana State University. "World's First Cloned Transgenic Goats Born." ScienceDaily. ScienceDaily, 12 May 1999. <www.sciencedaily.com/releases/1999/05/990512075340.htm>.
Louisiana State University. (1999, May 12). World's First Cloned Transgenic Goats Born. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/1999/05/990512075340.htm
Louisiana State University. "World's First Cloned Transgenic Goats Born." ScienceDaily. www.sciencedaily.com/releases/1999/05/990512075340.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins