Featured Research

from universities, journals, and other organizations

Simply Brilliant: UF/Russian Team Makes Gem-Quality Diamonds

Date:
August 18, 1999
Source:
University Of Florida
Summary:
Like Superman squeezing a lump of coal in his mighty fist, scientists and engineers from the University of Florida and Russia are speeding up Mother Nature's handiwork through creating gem-quality diamonds with man-made heat and pressure.

Related Articles


GAINESVILLE, Fla. --- Like Superman squeezing a lump of coal in his mighty fist, scientists and engineers from the University of Florida and Russia are speeding up Mother Nature's handiwork through creating gem-quality diamonds with man-made heat and pressure.

Using what they describe as a remarkable new technology first developed in Russia, the team has created yellow, amber, green and colorless diamonds as large as 1.6 carats since making their first attempt about a year ago. The research, funded largely by a company that intends to sell what it calls "cultured diamonds" for jewelry, is leading to a better understanding of how to make diamonds and other crystals not only for jewelry, but also for next-generation high-speed electronics.

"Our goal has been to understand the science and technology behind growing crystals," said Reza Abbaschian, chairman of UF's materials science and engineering department.

People have been able to make gem-quality diamonds since the 1960s, but the machines were huge and the cost exceeded that of mining natural diamonds, Abbaschian said. As a result, diamond research and manufacturing efforts have centered on producing industrial diamonds for cutting tools, abrasive materials or other uses.

In the 1980s, however, a team of Russian scientists in the Siberian city of Novosibirsk developed a small, high-pressure, high-temperature machine capable of making low-cost, gem-quality diamonds.

About the size of a washing machine, the device starts with a carbon source and a shard of a real diamond called a "seed." The machine squeezes the seed with increasingly higher pressure topping out at 850,000 pounds per square inch. Other equipment heats the core to 2,000 to 3,000 degrees Fahrenheit. The high pressure and high temperatures transform the seed into a bigger diamond.

The machines require very little electricity and are not expensive to build, but the Russian researchers were unable to make them consistently produce diamonds of the same color or quality, Abbaschian said. That's where UF's research came in.

"Our objective has been to be able to control the process," he said. "Once we control the processing parameters, we can modify them to get different results."

Since the UF/Russian team attempted to make its first diamond in one of five machines imported from Russia about a year ago, the team has made more than 230 gem-quality diamonds at UF. Though the largest so far is 1.6 carats, the machines theoretically should be capable of producing diamonds up to 5 carats, Abbaschian said. It takes about 50 hours to grow a one-carat diamond, he said.

Like natural diamonds, the UF-produced diamonds are 100 percent carbon and harder than any natural substance. A typical jeweler could not distinguish between natural diamonds and the UF ones, Abbaschian said The only difference is at the atomic level; natural diamonds have paired nitrogen impurity atoms while UF diamonds have single atoms.

The Gemesis Corp., a small Florida company, plans to draw on the research to produce diamonds for jewelry at a facility in Gainesville, said Carter Clarke, chief executive officer. "What Dr. Abbaschian and his crew have done is to turn this scientific endeavor into a commercially viable enterprise," said Clarke, an entrepreneur and retired U.S. Army general. "We know now that we can produce a quality, consistent product."

The UF/Russian research team hopes to take the project far beyond gem-quality diamonds. Abbaschian said diamonds with certain properties are highly effective semiconductors capable of operating at higher power and temperatures than traditional silicon semiconductors. Natural diamonds with such properties are extremely rare, and the UF/Russian team hopes to use the machines to learn more about whether and how such diamonds might be created.

The UF team is composed of Abbaschian; Rajiv Singh, a professor of materials science and engineering; and Robert Chodelka, a research faculty member. The Russian members are Alexander Novikov, Nikolay Patrin, Vasili Kacholov and Lidia Patrina.

-30-

Note to reporters/editors: Color or black & white photo available with this story. For information, call News & Public Affairs photography at (352) 392-9092.


Story Source:

The above story is based on materials provided by University Of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida. "Simply Brilliant: UF/Russian Team Makes Gem-Quality Diamonds." ScienceDaily. ScienceDaily, 18 August 1999. <www.sciencedaily.com/releases/1999/08/990817092046.htm>.
University Of Florida. (1999, August 18). Simply Brilliant: UF/Russian Team Makes Gem-Quality Diamonds. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/1999/08/990817092046.htm
University Of Florida. "Simply Brilliant: UF/Russian Team Makes Gem-Quality Diamonds." ScienceDaily. www.sciencedaily.com/releases/1999/08/990817092046.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins