Featured Research

from universities, journals, and other organizations

UC Irvine Researchers Discover Molecular Interaction That Gives New Insight On How Cells Communicate

Date:
February 18, 2000
Source:
University Of California, Irvine
Summary:
UC Irvine researchers have discovered a new molecular interaction involved in embryo development that is providing fundamental information on how cells communicate during the important early stages of development.

Study, reported in Nature, offers new information on how genes act during key stages of embryo development

Related Articles


Irvine, Calif., Feb. 16, 2000 — UC Irvine researchers have discovered a new molecular interaction involved in embryo development that is providing fundamental information on how cells communicate during the important early stages of development.

Working with scientists at the National Institute for Basic Biology in Okazaki, Japan, the researchers identified a novel interaction among molecules that regulate the development of the head, back and central nervous system. Their discovery shows for the first time the linking of molecules from two key growth-regulating genes and potentially may lead to a better understanding of cellular abnormalities that can lead to colon and skin cancers.

Their findings appear in the Feb. 17 issue of Nature.

"This gives us new insight on how molecules act during the crucial early stages of development," said Ken W.Y. Cho, professor of developmental and cell biology at UCI who, along with Hiroshi Shibuya of the National Institute of Basic Biology, is a lead researcher in this study.

Researchers observed the signaling pathways of two genes-named Wnt and TGF--during the formation of frog embryos. During development, these pathways give the specific information that determines the role each cell will play. These signals travel through a series of intermediate molecules, called relay molecules, to the nucleus of a cell, where gene regulation occurs.

The UCI researchers have found that two relay molecules from the Wnt signaling pathway-named Lef and b-catenin-and one molecule from a member of the TGF-b signaling pathway-named Smad4-interact both physically and functionally. This means that the initial signals from the two gene pathways travel through these intermediate molecules for delivery to the cell nucleus.

"While it is already known that these two signaling pathways cooperate to regulate cellular events, this is the first time that their relay molecules have been shown to physically interact together instead of acting separately," Cho said.

Cho's main research interest lies in understanding the molecular activity that governs the formation of Spemann's Organizer, a region of the embryo that determines that the head, backbone, nervous system and muscles will develop in the right places. The interaction among the Lef, b-catenin and Smad4 molecules affects the formation of Spemann's Organizer. In addition, these molecules also determine other cell activity in both developing and adult organisms.

Aberrations in the normal function of these molecules have been linked to some types of cancers, such as skin and colon cancers, although the exact mechanism that leads to cancer is still not well understood. This new information adds to the researchers' understanding of how these molecules function normally, which improves the potential for someday better understanding how cancers arise. In addition to Cho and Shibuya, authors of the study are Minako K. Hashimoto, Souichi Ogata and Micheline N. Laurent of UCI's Department of Developmental and Cell Biology and Michiru Nishita and Naoto Ueno of the Department of Developmental Biology at the National Institute for Basic Biology. The study was funded by the National Institutes of Health and the Pew Scholars Program.


Story Source:

The above story is based on materials provided by University Of California, Irvine. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Irvine. "UC Irvine Researchers Discover Molecular Interaction That Gives New Insight On How Cells Communicate." ScienceDaily. ScienceDaily, 18 February 2000. <www.sciencedaily.com/releases/2000/02/000218060856.htm>.
University Of California, Irvine. (2000, February 18). UC Irvine Researchers Discover Molecular Interaction That Gives New Insight On How Cells Communicate. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2000/02/000218060856.htm
University Of California, Irvine. "UC Irvine Researchers Discover Molecular Interaction That Gives New Insight On How Cells Communicate." ScienceDaily. www.sciencedaily.com/releases/2000/02/000218060856.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins