Featured Research

from universities, journals, and other organizations

Bacterial Strain May Help Clean Up Harmful Industrial Waste

Date:
March 7, 2000
Source:
Ohio University
Summary:
Mother Nature has a special weapon to fight off threats to her environmental health: bacteria. But just how these tiny microbes do their work remains a mystery, one an Ohio University microbiologist is trying to unravel.

ATHENS, Ohio -- Mother Nature has a special weapon to fight off threats to her environmental health: bacteria. But just how these tiny microbes do their work remains a mystery, one an Ohio University microbiologist is trying to unravel.

Related Articles


Under his microscope is a bacterial strain called T1 capable of breaking down one of the most commonly used industrial solvents, toluene. A common but toxic ingredient in gasoline, adhesives and household solvents, the substance has been known to contaminate groundwater and soil.

"A lot of current cleanup techniques involve taking all the contaminated soil from a site and hauling it off somewhere and dumping it or burning it," says Peter Coschigano, an assistant professor of environmental microbiology and lead investigator on this National Science Foundation-funded project. "That if you talk about tons and tons of soil can be expensive, and you're left with a big hole in the ground."

But environmental remediation professionals might be able to avoid pockmarking the earth if researchers can understand what conditions must exist for bacterial strains such as T1 to digest dangerous contaminants.

"The potential is that it can be more cost-effective and less damaging to the environment," says Coschigano, whose research appears in the March issue of the journal Applied and Environmental Microbiology.

T1 metabolizes toluene, a hazardous substance widely used as an industrial solvent. Though toluene can enter the environment via spilled drops of gas at the filling station, the use of paint thinners, or small industrial leaks, the bigger health and environmental threat would be a large-scale industrial accident, which can contaminate groundwater and soil.

Researchers at the New York University Medical Center discovered the bacterial strain T1 about 10 years ago, digging through the mud at contaminated sites in search of an organism in the natural environment that could break down toluene without oxygen, which is absent in some polluted areas. Coschigano is investigating how T1 metabolizes the substance, what genes are involved, and how the process is turned on and off.

He has confirmed the first step in T1's use of toluene for fuel: Proteins produced from four genes under examination are responsible for carrying out the process. Three of the proteins, which work together as a team, are activated by a fourth protein. "They are all needed to do the work," he says. "Just like a car needs an engine, brakes and tires to work." Coschigano also has detected a fifth, previously unidentified gene in the bacterium, but doesn't know what role if any it plays.

Coschigano studies how the bacterial strain regulates its metabolism of toluene by testing T1 on pyruvate, a carbon substance with a much different structural composition than toluene. When the bacterial strain is grown on pyruvate, the genes responsible for metabolism don't switch on, unlike the activity seen when the bacterial strain is bred on toluene.

Even if Coschigano determines how to control T1's appetite for toluene in the lab, he doesn't know how efficiently the bacterial strain will clean up contaminants in the complex natural environment. A more predictable, easier and cheaper option might be to unleash T1 on toluene in a contained, industrial setting before toluene has a chance to escape into the environment.

"Toluene is one of the most widely-used industrial solvents," he says. "There can be situations where companies have a lot of toluene waste they need to dispose of. And instead of incinerating it, if we can deal with it in a contained system, we might be able to reduce that cost."

Coschigano received a five-year Faculty Early Career Development (CAREER) grant from the NSF in 1998. He holds an appointment in the College of Osteopathic Medicine.


Story Source:

The above story is based on materials provided by Ohio University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio University. "Bacterial Strain May Help Clean Up Harmful Industrial Waste." ScienceDaily. ScienceDaily, 7 March 2000. <www.sciencedaily.com/releases/2000/03/000307090359.htm>.
Ohio University. (2000, March 7). Bacterial Strain May Help Clean Up Harmful Industrial Waste. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2000/03/000307090359.htm
Ohio University. "Bacterial Strain May Help Clean Up Harmful Industrial Waste." ScienceDaily. www.sciencedaily.com/releases/2000/03/000307090359.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Brawling Pandas Are Violently Adorable

Brawling Pandas Are Violently Adorable

Buzz60 (Jan. 29, 2015) Video of pandas play fighting at the Chengdu Research Base in China will make your day. Mara Montalbano (@maramontalbano) shows us. Video provided by Buzz60
Powered by NewsLook.com
Why Researchers Say We Should Cut Back On Biofuels

Why Researchers Say We Should Cut Back On Biofuels

Newsy (Jan. 29, 2015) Biofuels aren&apos;t the best alternative to fossil fuels, according to a new report. In fact, they&apos;re quite a bad one. Video provided by Newsy
Powered by NewsLook.com
3-D Printed Wheelchair Helps Two-Legged Dog Learn to Run

3-D Printed Wheelchair Helps Two-Legged Dog Learn to Run

Buzz60 (Jan. 29, 2015) 3-D printing helps another two-legged dog run around with his four-legged friends. Jen Markham (@jenmarkham) has the adorable video. Video provided by Buzz60
Powered by NewsLook.com
Dogs Bring on So Many Different Emotions in Their Human Best Friends

Dogs Bring on So Many Different Emotions in Their Human Best Friends

RightThisMinute (Jan. 28, 2015) From new-puppy happy tears to helpful-grocery-carrying-dog laughter, our four-legged best friends can make us feel the entire spectrum of emotions. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins