Featured Research

from universities, journals, and other organizations

Low Carbon Dioxide Levels In Atmosphere During Glacial Periods May Be Caused By Antarctic Sea Ice

Date:
March 10, 2000
Source:
Scripps Institution Of Oceanography / University Of California, San Diego
Summary:
A new study indicates that variations in Antarctic sea ice may have played a significant role in lowering atmospheric carbon dioxide (CO2) concentrations during the last ice age. This study makes progress towards unraveling the mysteries of the past climate changes, a necessary step for predicting future climate.

A new study indicates that variations in Antarctic sea ice may have played a significant role in lowering atmospheric carbon dioxide (CO2) concentrations during the last ice age. This study makes progress towards unraveling the mysteries of the past climate changes, a necessary step for predicting future climate.

The study by Britton Stephens, a University of Colorado researcher at the National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory in Boulder, Colo., (formerly of Scripps), and Ralph Keeling of Scripps Institution of Oceanography at the University of California, San Diego, appears in the March 9 issue of Nature and presents a new theory to explain why low carbon dioxide concentrations in the atmosphere are found during glacial periods.

According to ice core records, every hundred thousand years or so, the earth cycles between warm periods and cold glacial periods, with Antarctic temperatures varying by about 20 degrees Fahrenheit. Records also indicate that during the glacial periods there was 30 percent less CO2 in the atmosphere. This study attempts to solve the mystery of the connection between global atmospheric CO2 concentrations and Antarctic temperatures, which seem to rise and fall together. Carbon dioxide is one of the most important greenhouse gases. While it is a naturally occurring gas, it also has been increasing in the atmosphere. Many believe this increase is due to human activities and raises concern about global warming.

While algae and other microscopic plants in the oceans are constantly removing CO2 from the atmosphere as they grow and live, eventually they die and sink, returning the carbon dioxide to the deep ocean. "Thus, the amount of CO2 in the atmosphere depends on how efficiently the water from the deep ocean can return to the surface and release its extra CO2," the authors said.

"Recently we have learned that deep waters primarily return to the surface around Antarctica as opposed to at low-latitudes as was previously believed. Since the waters around Antarctica were mostly covered with ice during glacial periods, that could have prevented much of the CO2 in the surfacing deep waters from leaking back to the atmosphere, thereby lowering atmospheric CO2 concentrations," Stephens said.

The authors constructed a simple computer model that represents the ocean-atmosphere CO2 system and reflected the improved understanding of deep-water circulation.

"When we increased the amount of sea-ice around Antarctica in the model to simulate the glacial state, the atmospheric CO2 concentration decreased by a similar amount as that observed in ice-core records," Stephens said. This result suggests that variations in Antarctic sea-ice may play a significant role in regulating atmospheric CO2 on glacial time scales.

"This is the first study that shows that sea ice can have a significant effect on atmospheric carbon dioxide concentrations," said co-author Keeling. "This may be one of the keys to unraveling the origins of the major climate shifts of the past. It also opens the door to the Southern Hemisphere's control of climate. If sea ice is affecting carbon dioxide in this way, then you can imagine how many ways the Southern Hemisphere may be driving climate change throughout the world."

According to the authors, in order to predict future atmospheric carbon dioxide concentrations and their influence on global climate, "we need to first understand the causes of past carbon dioxide changes."

The study was supported by the National Science Foundation and the Achievement Rewards for College Scientists Foundation.

######

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. More than 300 research programs are under way today in a wide range of scientific areas. The institution has a staff of about 1,300, and annual expenditures of approximately $100 million, from federal, state, and private sources. Scripps operates the largest academic fleet with four oceanographic research ships for worldwide exploration and one research platform.


Story Source:

The above story is based on materials provided by Scripps Institution Of Oceanography / University Of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Institution Of Oceanography / University Of California, San Diego. "Low Carbon Dioxide Levels In Atmosphere During Glacial Periods May Be Caused By Antarctic Sea Ice." ScienceDaily. ScienceDaily, 10 March 2000. <www.sciencedaily.com/releases/2000/03/000310075412.htm>.
Scripps Institution Of Oceanography / University Of California, San Diego. (2000, March 10). Low Carbon Dioxide Levels In Atmosphere During Glacial Periods May Be Caused By Antarctic Sea Ice. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2000/03/000310075412.htm
Scripps Institution Of Oceanography / University Of California, San Diego. "Low Carbon Dioxide Levels In Atmosphere During Glacial Periods May Be Caused By Antarctic Sea Ice." ScienceDaily. www.sciencedaily.com/releases/2000/03/000310075412.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins