Featured Research

from universities, journals, and other organizations

NYU Biologist Identifies Gene That Regulates How Plant Cells Proliferate And Organize To Form Root Systems

Date:
May 29, 2000
Source:
New York University
Summary:
During the life cycle of plants and animals, a single cell produces a multicellular organism with many different specialized cell types. But how does it happen? How and why does asymmetrical cell division -- in which a single cell divides into two daughter cells with different characteristics -- happen? In the May 26 issue of Cell, NYU plant molecular biologist Philip N. Benfey reports that he has identified a gene that governs how plant cells proliferate and organize to form root systems.

During the life cycle of plants and animals, a single cell produces a multicellular organism with many different specialized cell types. But how does it happen? How and why does asymmetrical cell division -- in which a single cell divides into two daughter cells with different characteristics -- happen? These are fundamental questions, and they are the primary research focus of NYU plant molecular biologist Philip N. Benfey.

Related Articles


Benfey works with plants because there is a relatively small number of different tissue types in plants as compared to animals. In particular, Benfey is interested in the root systems of plants. This is again for reasons of simplicity. The root has a simple radial structure, its growth is continuous, it is transparent and there are a small number of cell types.

In the May 26 issue of Cell, Benfey reports that he has identified a gene that governs how plant cells proliferate and organize to form root systems.

According to Benfey, the research has important implications for both biology and bioengineering. Benfey's article is entitled "The SHORT-ROOT Gene Controls Radial Patterning of the Arabidopsis Root through Radial Signaling." In the Cell article, Benfey reports that the Arabidopsis plant's SHORT-ROOT (SHR) gene governs asymmetric cell division in the root's cortex and endodermis (the layer of cells that regulates what chemicals are absorbed into the plant.)

In addition, Benfey found that the SHR gene governs the specific characteristics of the endodermis. By manipulating where in the plant the SHR gene was expressed, the researchers were able to manipulate the number of endodermal cell layers made in the root.

Benfey said, "Our findings have potential biotechnology applications and also implications for evolutionary biology."

"Our research findings might be used to improve such agronomic traits as tolerance for salinity and reliance on fertilizer. Because roots normally grow underground, it is very difficult to breed for roots that are best suited for a particular environment. The use of genetic engineering may provide a better means of addressing this problem.

From an evolutionary standpoint, it has been unclear how organs formed from very different cell division processes could end up with essentially the same tissues in the same places. Extending molecular research from Arabidopsis to roots of other species provides a unique system to understand the evolution of meristem organization both during embryogenesis and vegetative growth."

###

Philip Benfey received his Ph.D. in 1986 from Harvard Medical School. He then held a post-doctoral fellowship at the Rockefeller University, working on the regulation of gene expression in higher plants. He was appointed an assistant professor at the Rockefeller University in 1990 and then moved his laboratory to NYU in 1991 to set up an independent Plant Molecular Biology program.

This research was funded by grants from the National Institute of Health.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU Biologist Identifies Gene That Regulates How Plant Cells Proliferate And Organize To Form Root Systems." ScienceDaily. ScienceDaily, 29 May 2000. <www.sciencedaily.com/releases/2000/05/000529094240.htm>.
New York University. (2000, May 29). NYU Biologist Identifies Gene That Regulates How Plant Cells Proliferate And Organize To Form Root Systems. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2000/05/000529094240.htm
New York University. "NYU Biologist Identifies Gene That Regulates How Plant Cells Proliferate And Organize To Form Root Systems." ScienceDaily. www.sciencedaily.com/releases/2000/05/000529094240.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins