Featured Research

from universities, journals, and other organizations

UF Technique Detects Tiny, Potentially Harmful Airborne Particles

Date:
September 25, 2000
Source:
University Of Florida
Summary:
A University of Florida professor has found a way to detect and identify extremely low levels of air pollution, a step that comes as concerns mount over the health impacts of breathing in small particles.

GAINESVILLE, Fla. --- A University of Florida professor has found a way to detect and identify extremely low levels of air pollution, a step that comes as concerns mount over the health impacts of breathing in small particles.

David Hahn, a UF professor of mechanical engineering, developed the technique -- a unique application of a well-known technique called Laser Induced Breakdown Spectroscopy -- with the assistance of Sandia National Laboratories in Livermore, Calif.

The process begins with an air sampler, located on a rooftop at UF's nuclear sciences building, that filters out relatively large particles and pumps the air into a nearby lab. Next, the air passes through the pulsing beam of a powerful infrared laser, and a small part of it heats up to over 35,000 degrees.

The heat vaporizes airborne molecules and particles, resulting in a flash of light and a loud crack. Although the eye can't see it, each atomic element in the vaporized sample produces a different wavelength of light. A spectrometer records these "fingerprints" and determines which elements are present, providing a real-time picture of the airborne particles.

Hahn tested his technique over the Fourth of July holiday, measuring increased airborne concentrations of magnesium, a metal used in fireworks, for as long as a week after fireworks displays ended. The increases were so small they posed no threat to human health, but the test demonstrated the technique could also detect similarly low levels of more harmful particles, such as arsenic, chromium or lead.

"The test really demonstrated the ability of this technique to measure particulate concentration levels several orders of magnitude below regulatory standards," Hahn said. "That's steadily becoming more important as people involved in pollution control seek to more accurately monitor pollution and better determine its sources."

The diameter of a human hair ranges from 50 to 100 microns, with 1 micron measuring a millionth of a meter. Hahn says his technique can measure particles as small as one-tenth of a micron, determining both mass and composition. The technique also detects particles in extremely low concentrations. With the fireworks, the technique measured week long post-fireworks magnesium concentrations at an average of 44.4 parts per trillion, compared with 2.8 parts per trillion before the fireworks.

Hahn said recent research indicates that very small particles are more dangerous than larger ones because the body's natural defenses capture and expel the larger particles, while small ones lodge in the lung cavities and cause damage over time. A major component of smog, airborne particles have been tied to asthma and other diseases. One recent study attributed 3 percent of deaths annually in Austria, France and Switzerland to particluates.

In response to such research, federal regulators increasingly have sought to study and regulate small particles. Two years ago, for example, the Environmental Protection Agency dropped its standard to regulate particulate matter down to particles as small as 2.5 microns.

Environmental officials would like to know more about what small particles the air contains -- at different times of the day and in different weather conditions -- and where the particles are coming from. The LIBS technique can help answer both questions because it picks up the presence of low levels of small particles in real time, Hahn said. That creates the potential for regulators to create much more effective, more targeted regulations, he said. "Right now, there's not a very good feel for what sources are producing what particles,"Hahn said. "If we can determine with a lot more specificity that these particles are coming from cars or plants or agriculture, then we can go after these sources and fix them."

Ben Smith, a scientist in UF's chemistry department, said Hahn's technique is one of two current techniques that can detect and measure extremely small, sparsely distributed particles. The equipment for the other technique, however, is both more complex and more expensive, costing at least $150,000 compared with about $80,000 for Hahn's technique.

"Scientists are becoming more and more interested in really small particles and how they impact human health," Smith said. "David's technique has real potential for both industrial and environmental monitoring."

###

Color or black & white photo available with this story. For information, please call News & Public Affairs photography at 352-392-9092.

Writer: Aaron Hoover, ahoover@ufl.edu

Source: David Hahn, 352-392-0807, dwhahn@ufl.edu


Story Source:

The above story is based on materials provided by University Of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida. "UF Technique Detects Tiny, Potentially Harmful Airborne Particles." ScienceDaily. ScienceDaily, 25 September 2000. <www.sciencedaily.com/releases/2000/09/000913210118.htm>.
University Of Florida. (2000, September 25). UF Technique Detects Tiny, Potentially Harmful Airborne Particles. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2000/09/000913210118.htm
University Of Florida. "UF Technique Detects Tiny, Potentially Harmful Airborne Particles." ScienceDaily. www.sciencedaily.com/releases/2000/09/000913210118.htm (accessed September 17, 2014).

Share This



More Earth & Climate News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins