Featured Research

from universities, journals, and other organizations

Frozen Human Cells Restore Nerve Conduction In Animal Model; Method May Find Use In Humans

Date:
February 7, 2001
Source:
Society For Neuroscience
Summary:
Scientists have successfully used frozen human cells taken from nerve tissue to restore nerve conduction in an animal model of multiple sclerosis.

Scientists have successfully used frozen human cells taken from nerve tissue to restore nerve conduction in an animal model of multiple sclerosis.

“Such cells could potentially be used in humans for a clinical trial in demyelinating disorders, such as multiple sclerosis,” says Jeffery Kocsis, PhD, of the Yale University School of Medicine. The study, funded primarily by the Department of Veterans Affairs, the Multiple Sclerosis Society and the National Institutes of Health, appears in the February 1 issue of The Journal of Neuroscience.

“This raises the possibility that a patient's own cells may be used to repair demyelinating diseases,” says Moses Chao, PhD, a neurobiologist at New York University School of Medicine.

The most common nervous system disease of young adults after epilepsy, multiple sclerosis (MS) is a life-long ailment of unknown origin that affects some 300,000 Americans. The most common symptoms are blurred vision, awkward gait, numbness and fatigue. MS strikes individuals who are mainly between the ages of 20 and 40. It results in earning losses of about $2 billion annually.

In diseases such as MS, some of the myelin – insulating material of a nerve cell’s axon that sends messages – in the brain or spinal cord is damaged. This leads to various neurological problems. Special cells, known as Schwann cells, make myelin.

In the new study, Kocsis and his colleagues prepared Schwann cells from human nerves taken from amputated limbs. The cells were frozen and stored for weeks to months. The frozen cells were then reconstituted and injected with a fine glass needle into a demyelinated lesion in the rat spinal cord. The researchers found that the human Schwann cells formed relatively extensive myelin in the damaged rat spinal cord and that nerve impulse conduction was improved by the cell transplantation procedure.

Possibly in the future, cells could be harvested and with a nerve biopsy directly from the patient who needs the transplant treatment and grown in larger numbers, making immunosuppressive drugs unnecessary. The scientists caution that it is unclear whether these cells will work as well if transplanted into a large lesion in an MS patient. However, they are encouraged by the observation that the cells have repair potential in animals.

Kocsis’s co-authors include Ikuhide Kohama, MD, PhD; Karen Lankford, PhD; Jana Preiningerova, PhD; Fletcher White, PhD; and Timothy Vollmer, MD; of Yale and the Veterans Affairs Medical Center in West Haven, CT. Kohama, Lankford, White, Vollmer and Kocsis are members of the Society for Neuroscience, an organization of more than 28,000 basic scientists and clinicians who study the brain and nervous system. Vollmer can be reached at 203-785-4086. The Society publishes The Journal of Neuroscience.


Story Source:

The above story is based on materials provided by Society For Neuroscience. Note: Materials may be edited for content and length.


Cite This Page:

Society For Neuroscience. "Frozen Human Cells Restore Nerve Conduction In Animal Model; Method May Find Use In Humans." ScienceDaily. ScienceDaily, 7 February 2001. <www.sciencedaily.com/releases/2001/02/010205073808.htm>.
Society For Neuroscience. (2001, February 7). Frozen Human Cells Restore Nerve Conduction In Animal Model; Method May Find Use In Humans. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2001/02/010205073808.htm
Society For Neuroscience. "Frozen Human Cells Restore Nerve Conduction In Animal Model; Method May Find Use In Humans." ScienceDaily. www.sciencedaily.com/releases/2001/02/010205073808.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins