Featured Research

from universities, journals, and other organizations

Genetic Secrets Of Metal-Eating Plants Uncovered

Date:
August 15, 2001
Source:
Purdue University
Summary:
Genes thought to allow plants to accumulate large amounts of metal in their tissues have been identified and cloned by a Purdue University scientist. The finding is expected to lead to new crop plants that can clean up industrial contamination, new foods that fight disease and reduced work for some farmers.

WEST LAFAYETTE, Ind. – Genes thought to allow plants to accumulate large amounts of metal in their tissues have been identified and cloned by a Purdue University scientist.

The finding is expected to lead to new crop plants that can clean up industrial contamination, new foods that fight disease and reduced work for some farmers.

David E. Salt, associate professor of plant molecular physiology and principal investigator on the project, says that this discovery opens up new avenues for plant breeders.

"This is really one of the first tools that we've got to manipulate this process of metal hyperaccumulation," he says. "So what we're going to do now is to start expressing these genes in nonaccumulating plants to see if we can turn them into metal-accumulating plants."

The genes were identified from the tiny wild mustard Thlaspi goesingense, a plant that lives in the Austrian Alps, where it hyperaccumulates nickel. The plant is similar to the nonmetal-accumulating plant Arabidopsis thaliana, which is commonly used in scientific research.

The research is published in the Tuesday (8/14) issue of the Proceedings of the National Academy of Science.

Salt says more than 350 species of plants are known to accumulate metal such as nickel, zinc, copper, cadmium, selenium or manganese in high levels.

"The plant species that we're interested in can accumulate 1 percent of their dry biomass as nickel. In a normal plant you might expect to find 10 to 100 parts per million of nickel in their tissue, and these plants can accumulate 10,000 parts per million," he says. "So they obviously have this extraordinary capacity to accumulate metals, and they do this in the wild without any interference from man. They just do this for a living."

Hyperaccumulating plants store the metal in microscopic structures in their cells called vacuoles. The vacuoles are membrane-lined structures that protect the rest of the cell from the toxic effects of the metal. Interestingly, the protective membranes that surround the vacuoles closely resemble cell membranes in the human liver that serve a similar function.

Scientists aren't completely sure why some rare plants try to grab as much metal as they can, but studies indicate that they do this to stop insects and other creatures from eating them.

Just as people hate to bite down on a piece of aluminum foil, insects tend to avoid eating plants that taste like metal.

"You can imagine if you're a bug and you bite down on a plant and it's got 10,000 parts per million of nickel in its leaf, it's not going to taste too good," Salt says, laughing.

Scientists are interested in using metal hyperaccumulating plants as a means to clean up contaminated brownfield sites. Researchers believe that soil polluted with heavy metal or radioactive materials could be cleaned up by using crop plants that could absorb the material. This process is called bioremediation, or more specifically when using plants, phytoremediation.

"Imagine if you have a site contaminated with cadmium. Right now your options are to put a fence around it and put a sign up telling people to stay out, build a parking lot over it, or dig up all of the soil and truck it to a landfill, which is very expensive," Salt says. "The idea would be that you could take plants that accumulate metal – you could essentially farm the metal out of the ground. Over five or 10 years, by growing crop rotations there, you could remove the metal from the site. The nice thing is that it's cheap, and you're left with a soil at the end of it which could be used for other things."

Salt says the metal hyperaccumulating plants found in nature would not be used for phytoremediation because they are all small and slow growing. Instead, scientists could move the genes Salt and his colleagues have identified into fast growing, large plants, such as grasses.

Another benefit of Salt's work could be functional foods – foods that contain micronutrients missing from diets in certain areas. Metals are essential nutrients in small doses, but some regions of the world lack foods that contain sufficient levels of these micronutrients, which causes severe health problems. Using the genetic tools Salt and his colleagues have identified, scientists could begin to bioengineer foods that contain these essential micronutrients.

A third application of the research would be for improved crop nutrition. "Instead of adding zinc to the soil because you live in a zinc-deficient region, why not have the wheat plant itself be more zinc-efficient so that you can reduce agricultural inputs?" Salt asks.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Genetic Secrets Of Metal-Eating Plants Uncovered." ScienceDaily. ScienceDaily, 15 August 2001. <www.sciencedaily.com/releases/2001/08/010815082128.htm>.
Purdue University. (2001, August 15). Genetic Secrets Of Metal-Eating Plants Uncovered. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2001/08/010815082128.htm
Purdue University. "Genetic Secrets Of Metal-Eating Plants Uncovered." ScienceDaily. www.sciencedaily.com/releases/2001/08/010815082128.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins