Featured Research

from universities, journals, and other organizations

Climate Plays Bigger Role Than CO2 In Make-Up Of Plant Communities

Date:
August 31, 2001
Source:
University Of Florida
Summary:
Local climate may be more important than carbon dioxide levels in determining what types of plants thrive and what types don’t do so well, a team of scientists reports in this week’s edition of the journal Science.

GAINESVILLE, Fla. --- Local climate may be more important than carbon dioxide levels in determining what types of plants thrive and what types don’t do so well, a team of scientists reports in this week’s edition of the journal Science.

Related Articles


Their findings suggest that rising global carbon dioxide levels tied to global warming may not be as crucial in determining the composition of plant communities as other, localized climate shifts, such as droughts or temperature changes.

“Nobody really knows what the increases in carbon dioxide are going to entail in terms of future changes in vegetation types,” said Mark Brenner, a UF assistant professor of geology and co-author of the paper, which appears in Friday in Science. “But it looks like climate changes in different areas may be more important than carbon dioxide, at least carbon dioxide by itself.”

The team, composed of six geologists and geographers from around the world and led by Geologist Yongsong Huang of Brown University, based their conclusions on an analysis of sediment from two lake bottoms, one in northern Mexico and one in northern Guatemala.

The sediments came from core samples retrieved by driving a hollow tube into the lake bottom. Over time, these sediments – which include terrestrial plant remains -- are deposited layer by layer, like a wedding cake, with the oldest layer on the bottom. Such cores provide an environmental archive that allows researchers to obtain a continuous record of changes in climate, vegetation and land use.

The cores were retrieved as long ago as 1980 by UF researchers and currently are kept in the core storage facility at UF’s Land Use and Environmental Change Institute. The researchers used new techniques that allowed them to analyze only the remains of land plants, specifically their leaf waxes. “The technology has come on line to allow us to do studies that we couldn’t do at the time we collected these samples,” Brenner said.

By measuring the isotope composition of the leaf waxes, the researchers were able to distinguish two broad categories of plants living in these areas -- so-called C3 and C4 plants, which have different photosynthetic processes. Many C4 plants are tropical grasses, while most tropical trees are C3 plants.

The researchers analyzed sediments deposited over the last roughly 27,000 years, from the last ice age to the current geological period, called the Holocene. During this period, there was a worldwide, relatively uniform increase in atmospheric carbon dioxide concentrations.

Brenner said that if carbon dioxide played the major role in determining plant composition, one would assume that analysis of the sediments would reveal very similar changes in relative abundance of C3 and C4 plants in the two places over the study period.

In fact, the researchers found that trends in C3 versus C4 plants were quite different at the two locations -- and that the changes were correlated not with carbon dioxide levels, but with shifts in rainfall. Over the millennia of the study period, the climate shifted from wet to dry in Mexico and dry to wet in Guatemala, with corresponding shifts in the plant communities. At Lake Alta Babicora in Mexico, abundant trees and shrubs shifted to grasses. At Lake Quexil in Guatemala, the abundance of trees and shrubs increased.

“The result appears to be that climate factors, especially moisture availability, determine whether C4 or C3 plants dominate in an area, not carbon dioxide,” Brenner said.

Many scientists believe global warming will cause significant variation in local climates worldwide, with some wet areas becoming dry and vice versa. If that occurs, it could have more impact on relative C3 versus C4 plant distribution than the rising carbon dioxide levels, researchers said. “The study suggests that if the climate gets drier worldwide today, then we may see more C4 grasslands appear,” said Huang, an assistant professor of geological sciences at Brown.

The findings also contribute to an enduring mystery about why the range of C4 plants expanded 7 million to 8 million years ago. The results suggest that climate factors may have also been important in ancient Miocene C4 expansion, Brenner said.

The research was funded by a grant from the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida. "Climate Plays Bigger Role Than CO2 In Make-Up Of Plant Communities." ScienceDaily. ScienceDaily, 31 August 2001. <www.sciencedaily.com/releases/2001/08/010831081330.htm>.
University Of Florida. (2001, August 31). Climate Plays Bigger Role Than CO2 In Make-Up Of Plant Communities. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2001/08/010831081330.htm
University Of Florida. "Climate Plays Bigger Role Than CO2 In Make-Up Of Plant Communities." ScienceDaily. www.sciencedaily.com/releases/2001/08/010831081330.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins