Featured Research

from universities, journals, and other organizations

Discovery Of Bacterial "Touch Sensor" Could Lead To Biofilm Treatments

Date:
February 6, 2002
Source:
Princeton University
Summary:
A discovery by Princeton scientists could lead to new ways to combat biofilms -- tough coatings of bacteria that form on everything from teeth and prosthetic devices to the hulls of ships.

A discovery by Princeton scientists could lead to new ways to combat biofilms -- tough coatings of bacteria that form on everything from teeth and prosthetic devices to the hulls of ships.

Related Articles


Biologists Karen Otto and Thomas Silhavy found a mechanism bacteria use to sense when they have touched a solid surface, which sets into motion the process for building a film. Their study of E. coli identified a protein on the surface of the bacteria that initiates biofilm formation, plus a two-protein receptor system that receives and transmits the signal within the cell.

"In a sense, you can say that for E. coli this is a touch sensor," said Silhavy, a professor in the Department of Molecular Biology. "If we mutate these genes, the bacteria don't attach as well and, if they do, they attach in a different way."

A paper describing the results is appearing in the Feb. 5 online edition of the Proceedings of the National Academy of Sciences.

The results suggest that disrupting this sensing mechanism may be an effective strategy for developers of drugs or other antibacterial agents aimed specifically at biofilms. When bacteria join together as a biofilm, they become much more resistant to antibiotics than when they were free-floating, said Silhavy.

Many kinds of bacteria commonly found in liquid environments naturally form biofilms when they meet a solid surface. Biofilms often occur on teeth where, if not removed, they become part of plaque and lead to decay. They also can pose a problem on any artificial surface implanted in the body, such as prosthetics and catheters, which can be difficult to treat with antibiotics. Biofilms corrode pipes, infect heating and cooling devices and slow down ships by making the hulls move less smoothly through the water.

Otto, a postdoctoral researcher in Silhavy's lab, used a variety of techniques to pinpoint the touch-sensing mechanism. First, she created a strain of bacteria with an easily detectable marker attached to the genes they wanted to study. Whenever the bacteria used those genes, the marker became visible. Otto exposed a vial of bacteria to tiny glass beads, which triggered the attachment process. In the first hour, the activity of the receptor system went way up, but did not change for bacteria that were free floating.

Otto and Silhavy then genetically engineered bacteria to lack the genes in question. With each gene deletion, the bacteria did not attach as well.

"Without these genes, they can't adapt to life on a surface," said Otto. "It's clear that when cells turn on these genes, they adapt to a different environment."

More than just an accumulation of bacteria, biofilms are complex structures in which the bacteria are likely to use a substantially different set of genes than in their free-floating form, said Silhavy. This community of bacteria, which often includes many different strains, gives protection against antibiotics and other hazards, and at the same time allows the efficient transport of nutrients.

"It's not just a glob," said Silhavy. "They actually build a little structure on the surface, so nutrients can get inside the biofilm."

To analyze the formations their bacteria made, the researchers used a measuring device called a quartz crystal microbalance. The device has a vibrating crystal that is very sensitive to anything that touches it. As bacteria attached to the crystal, the researchers could measure not only how many cells were attached, but also how rigid a structure they formed. This test showed that when the mutated bacteria did attach to surfaces, they did so in a way that did not resemble biofilms.

"In fact, they were a lot like dead cells," said Silhavy.

The next stage in the research, said Silhavy, is to investigate further along the chain of reactions and find out what mechanisms are activated after the initial touch sensor and receptor system that he and Otto identified.


Story Source:

The above story is based on materials provided by Princeton University. Note: Materials may be edited for content and length.


Cite This Page:

Princeton University. "Discovery Of Bacterial "Touch Sensor" Could Lead To Biofilm Treatments." ScienceDaily. ScienceDaily, 6 February 2002. <www.sciencedaily.com/releases/2002/02/020206075903.htm>.
Princeton University. (2002, February 6). Discovery Of Bacterial "Touch Sensor" Could Lead To Biofilm Treatments. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2002/02/020206075903.htm
Princeton University. "Discovery Of Bacterial "Touch Sensor" Could Lead To Biofilm Treatments." ScienceDaily. www.sciencedaily.com/releases/2002/02/020206075903.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins