Featured Research

from universities, journals, and other organizations

Single Cell Type Seems To Control Internal Clock And Pupil Of Eye

Date:
February 22, 2002
Source:
Johns Hopkins Medical Institutions
Summary:
Using genetically engineered mice, Johns Hopkins and other scientists have shown for the first time that a single kind of cell in the retina seems to detect light for the body's internal clock and for the pupil, they report in a recent issue of Science.

Using genetically engineered mice, Johns Hopkins and other scientists have shown for the first time that a single kind of cell in the retina seems to detect light for the body's internal clock and for the pupil, they report in a recent issue of Science.

Related Articles


The research represents an important step in understanding how light resets the internal clock, or circadian rhythm, and how the pupil opens and closes in response to light, the scientists say.

To learn how light reaches those brain centers, postdoctoral fellow Samer Hattar, Ph.D., created a mouse whose melanopsin protein was partially replaced with another, easy-to-detect protein. Melanopsin is suspected to be light-sensitive but not involved in forming visual images.

The scientists discovered that only a tiny fraction of nerve cells in the retina make melanopsin. These melanopsin-expressing nerve cells, which reach deep into the brain to areas that control the clock and the pupil, join image-producing rods and cones as the only retinal cells that can detect light, the researchers report.

The clock regulates the body's daily cycles, including sleep, hormone production, body temperature and blood pressure. While an individual's natural cycle may be more or less than 24 hours, the 24-hour cycle of day and night keeps the body's rhythm in tune with the environment. Light adjusts the cycle when it gets out of whack, as with jet-lag or workers switching to the late shift.

"The melanopsin-containing cells create a light-detecting network across the retina in the mice," says King-Wai Yau, Ph.D., a Howard Hughes Medical Institute investigator and professor of neuroscience and ophthalmology at Johns Hopkins. "The cells seem sensitive to how much light there is and how long it lasts, unlike the cells involved in vision, which detect borders between light and dark."

The findings support the idea that there are two primary groups of light-detecting cells in the eye: one responsible for creating visual images and the other for detecting levels of light, adds Yau.

For their experiments, the researchers created a line of mice with one normal copy of the melanopsin gene and one copy that coded for a protein called tau-lacZ instead. In addition, Hopkins neuroscience graduate student Hsi-Wen Liao developed an antibody against melanopsin. The antibody flags melanopsin in cells, while tau-lacZ lights up the tentacle-like axons of nerve cells in which the melanopsin gene is turned on.

With these tools, the scientists figured out exactly which cells contained melanopsin, whether those cells were naturally sensitive to light, and where they connected in the brain. While reports by others have linked melanopsin-containing cells in the retina to the clock's central controller, the new findings show that these cells also connect to other areas of the brain.

"With our technique, we can visually trace single cells and follow their axons for long distances to see where they begin and where they end," says Yau.

The experiments showed that the melanopsin-containing cells (about 1 or 2 percent of so-called "retinal ganglion cells") connect to the clock's central controller (the suprachiasmatic nucleus) and to all other parts of the brain known to regulate the clock and the pupil's response to light (the intergeniculate leaflet, the ventral lateral geniculate and an area near the olivary pretectal nucleus in the brain stem).

Much remains unknown about melanopsin itself, including whether it is sensitive to light, and about these cells' roles in controlling the clock and pupil, the researchers stress. "The genetically engineered mice give us an important tool to learn how non-visual functions of the eye depend on light," says Hattar.

Developing and studying a mouse that completely lacks melanopsin will help expand the scientists' understanding of the protein's role in the internal clock, they say, as the protein's absence may dramatically affect the animals' ability to adapt to different light cycles.

"If there is a cycle of light and dark, a normal mouse will adjust its natural cycle to match," says Hattar. "When and how much a mouse runs on a wheel reveals whether the animal thinks it is day or night. If melanopsin is required for resetting the internal clock, however, mice without it shouldn't be able to adjust to cycles of light and dark."

Other authors on the paper are Motoharu Takao and David Berson of Brown University in Providence, R.I. The experiments were funded by the National Eye Institute and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Single Cell Type Seems To Control Internal Clock And Pupil Of Eye." ScienceDaily. ScienceDaily, 22 February 2002. <www.sciencedaily.com/releases/2002/02/020222073950.htm>.
Johns Hopkins Medical Institutions. (2002, February 22). Single Cell Type Seems To Control Internal Clock And Pupil Of Eye. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2002/02/020222073950.htm
Johns Hopkins Medical Institutions. "Single Cell Type Seems To Control Internal Clock And Pupil Of Eye." ScienceDaily. www.sciencedaily.com/releases/2002/02/020222073950.htm (accessed October 26, 2014).

Share This



More Plants & Animals News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins