Featured Research

from universities, journals, and other organizations

Mechanics Of Bacterium's Toxin Being Unraveled

Date:
May 22, 2002
Source:
University Of Illinois At Urbana-Champaign
Summary:
Researchers are unraveling the mystery of what happens when a bacterium’s toxin hits its cellular target. In an age of growing antibiotic resistance and a threat of bioterrorism, such knowledge may help to open new lines of treatment, says a microbiologist at the University of Illinois at Urbana-Champaign.

SALT LAKE CITY (5/21/2002) -- Researchers are unraveling the mystery of what happens when a bacterium’s toxin hits its cellular target. In an age of growing antibiotic resistance and a threat of bioterrorism, such knowledge may help to open new lines of treatment, says a microbiologist at the University of Illinois at Urbana-Champaign.

Related Articles


In a presentation today at the 102nd annual meeting of the American Society for Microbiology, Brenda A. Wilson described her basic research and recent findings involving Pasteurella multocida, a bacterium that once left her hospitalized and near death. The bacterium, she said, offers a window to view the mechanics of many toxin-mediated bacterial diseases, including anthrax, which left five people dead from acts of terrorism last year despite extensive treatment with antibiotics.

“A big problem now is antibiotic resistance, but we also need alternative strategies for attacking toxin-mediated disease after exposure to toxins,” she said in an interview in advance of her talk. “Current strategies, such as vaccine therapy or treatment with antitoxins or other inhibitors, are focused on blocking a toxin from binding to cells. My studies consider that exposure has already occurred. Once the toxin is in and hits its target, what do we do? I want to understand what a toxin does after it hits the target.”

Pasteurella multocida is a well-known pathogen in veterinary medicine. Its various strains affect domesticated and agricultural animals, leading usually to serious, and often deadly, respiratory infections. Contact with animals sometimes results in respiratory problems in humans, and skin infections can occur after being bitten by an animal. The bacterium is even part of the Komodo dragon’s deadly bite.

Disease doesn’t always occur, Wilson said, but a synergistic effect with another microorganism, such as Mycoplasma or Bordatella, often has serious consequences.

In 1997, Wilson discovered that the Pasteurella multocida toxin’s target is a protein known as Gq, which regulates a variety of hormonal activities inside cells. “The role that Gq plays in a particular cell will determine what form the cellular damage takes when the toxin acts on it,” she said.

Antiobiotics until recent years have killed many kinds of bacteria, but even as they die some bacteria still can release toxins into the body. In many cases, just one toxin can enter a cell and alter its structure or kill it. Once toxins are released, she said, “you reach a point of no return, where you have a toxin disease no longer treatable with antibiotics even if you have completely removed the bacterium from the body.” In her talk, Wilson announced the construction of a tool “that allows us to visualize the pathway a toxin takes into a cell.” Her unpublished technique utilizes a synthetic green-fluorescent protein attached to the toxin protein. The added green protein, when visualized with a fluoresence microscope, accompanies the toxin during invasion and entry into a cell.

The tool, she said, will allow researchers to test inhibitors or other blocking agents that might be developed to fight toxin-mediated infections.

Wilson also discussed new findings from the May 3 issue of Circulation Research, in which she and her Columbia University collaborators, Susan F. Steinberg and Abdelkarim Sabri, reported that the Pasteurella multocida toxin attacks cardiac cells in two distinct ways. They found that at low concentrations the bacterium causes cardiac hypertrophy, an indicator of heart disease in which cells proliferate and enlarge the organ. At higher toxin levels, heart cells become susceptible to rapid destruction by other damaging agents. The toxin, Wilson said, can now be used as a potent tool to study heart disease processes.

She also provided a brief overview of her progress studying the bacterium’s toxic attack on skin and cells, particularly on the toxin’s ability to completely block fat accumulation. She theorizes that what she is seeing may partially explain the “wasting syndrome” often observed in infected animals.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Mechanics Of Bacterium's Toxin Being Unraveled." ScienceDaily. ScienceDaily, 22 May 2002. <www.sciencedaily.com/releases/2002/05/020522073159.htm>.
University Of Illinois At Urbana-Champaign. (2002, May 22). Mechanics Of Bacterium's Toxin Being Unraveled. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2002/05/020522073159.htm
University Of Illinois At Urbana-Champaign. "Mechanics Of Bacterium's Toxin Being Unraveled." ScienceDaily. www.sciencedaily.com/releases/2002/05/020522073159.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins