Featured Research

from universities, journals, and other organizations

Gene Controls Plant's Clock And Flowering Time

Date:
September 6, 2002
Source:
University Of Wisconsin-Madison
Summary:
Plants have never impressed anyone with their intelligence, but they do measure the seasons and tell time. After all, a Christmas cactus blooms only in winter and an evening primrose opens just at dusk. Now, scientists led by University of Wisconsin-Madison researchers report that they have discovered a gene that regulates when plants flower and is critical for keeping a plant's 24-hour clock running accurately.

MADISON -- Plants have never impressed anyone with their intelligence, but they do measure the seasons and tell time. After all, a Christmas cactus blooms only in winter and an evening primrose opens just at dusk. Now, scientists led by University of Wisconsin-Madison researchers report that they have discovered a gene that regulates when plants flower and is critical for keeping a plant's 24-hour clock running accurately. The researchers will publish their findings in the Friday, Sept. 6, issue of the scientific journal Nature.

The discovery adds a new piece to the still-unfinished puzzle of how plants regulate the transition from vegetative growth to flowering, and control their daily rhythmic activity. Mark Doyle, the article's lead author, says the discovery may aid agriculture, as farmers want to maximize vegetative growth from crops such as alfalfa and spinach, or control the timing of flowering and seed production.

"Our primary interest is in understanding what this new gene does to control flowering, but it may be difficult to separate that from its effects on the clock that determines plant rhythms," says Doyle, a research assistant in the College of Agricultural and Life Sciences.

Working with plant molecular biologist Richard Amasino in the Department of Biochemistry, Doyle identified the new gene, which they called early flowering 4 (ELF4).

"So far, scientists haven't found any genes similar to ELF4 outside the plant kingdom," Amasino says. "All organisms have these internal clocks, but there are different molecular mechanisms that operate them."

The Wisconsin scientists discovered the gene in Arabidopsis thaliana, a small plant used worldwide to study plant genetics, physiology and molecular biology. Arabidopsis plants typically flower quickly when days have 12 hours of light or more but take a long time to begin flowering when the day length is eight hours. Scott Michaels and Fritz Schomburg in Amasino's lab created tens of thousands of plants with individual genes inactivated and Doyle grew them in conditions where the day length was eight hours. He identified a plant that bloomed early despite the eight-hour days because the plant was a mutant in which the ELF4 gene was inactivated. He then isolated ELF4.

Doyle and Amasino sent plants with and without a functioning ELF4 gene to Andrew Millar's lab at the University of Warwick in England. When the Warwick group held the plants in continuous light or darkness, those with the ELF4 continued their daily patterns of leaf movement and gene expression. Plants without a functioning ELF4 gene quickly lost those rhythmic 24-hour patterns.

When Doyle restored a functioning ELF4 gene to plants lacking one, those plants could again maintain daily patterns even under constant light or darkness.

"ELF4 is critical to keeping the clock working accurately," says Doyle. However, he notes that there are five or six other genes that play a role in the plant's clock. "Scientists still have a lot of work to do before we can explain the molecular circuitry by which these genes, and the proteins produced from them, keep plants on a 24-hour cycle."

Joining the Wisconsin researchers as co-authors of the Nature paper are: Andrew J. Millar, Seth J. Davis, Ruth M. Bastow, and Harriet G. McWatters from the University of Warwick in England; and László Kozma-Bognár and Ferenc Nagy from the Institute of Plant Biology at the Biological Research Center in Hungary.

The UW-Madison research was supported by state funding to the College of Agricultural and Life Sciences, by a training grant from the National Institutes of Health, and by research grants from the USDA and National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin-Madison. "Gene Controls Plant's Clock And Flowering Time." ScienceDaily. ScienceDaily, 6 September 2002. <www.sciencedaily.com/releases/2002/09/020906065451.htm>.
University Of Wisconsin-Madison. (2002, September 6). Gene Controls Plant's Clock And Flowering Time. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2002/09/020906065451.htm
University Of Wisconsin-Madison. "Gene Controls Plant's Clock And Flowering Time." ScienceDaily. www.sciencedaily.com/releases/2002/09/020906065451.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) — The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) — Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins