Featured Research

from universities, journals, and other organizations

Not All Mammals Vomit -- Or How To Study Emesis In Mice

Date:
October 2, 2002
Source:
Journal Of Clinical Investigation
Summary:
If biologists have learned anything over the past decade, it is how similar all mammals are at the genetic level. 95% of the genes found in mice are also found in humans, and we even share a significant amount of genes and genetic circuitries with creatures as different as fruit flies or puffer fish. This might not come as much of a surprise to physiologists who have long used animals to learn about basic mechanisms in organ function that are shared across vertebrates or mammals, but the extent of overlap is still impressive to most.

If biologists have learned anything over the past decade, it is how similar all mammals are at the genetic level. 95% of the genes found in mice are also found in humans, and we even share a significant amount of genes and genetic circuitries with creatures as different as fruit flies or puffer fish. This might not come as much of a surprise to physiologists who have long used animals to learn about basic mechanisms in organ function that are shared across vertebrates or mammals, but the extent of overlap is still impressive to most. In many areas of biomedical research, rats or mice are the animal model of choice. And while most researchers are aware that mice are not just furry little humans that walk on all fours, some fundamental differences surprise even experts. Among 10 scientists who identify themselves as mouse geneticists, only one was aware that mice (and in fact all rodents) lack a very fundamental behavior: they do not vomit.

Related Articles


While that in itself raises all sorts of interesting questions (for example about the evolution of vomiting, and its advantages and disadvantages for the survival of a species), it poses a very specific problem when one tries to use rodents to study a drug with side effects that include nausea and emesis (the medical term for vomiting).

Annette Robichaud and colleagues at Merck Frosst Centre for Therapeutic Research in Montreal, Quebec, have faced this problem while developing drugs that inhibit a class of enzymes called class 4 phosphodiesterases, or PDE4s. PDE4 inhibitors have promise for the treatment of airway inflammatory diseases such as asthma, but their therapeutic potential has been limited by side effects of nausea and emesis. These side effects are thought to be caused by inhibition of PDE4s outside the airways. The PDE4 subfamily is composed of 4 subtypes that are present in overlapping but distinct tissues of the body, and the hope is that it might be possible to develop subtype-specific inhibitors that are effective in the airways but do not interfere with PDE4 activity in other tissues.

As a step towards that goal, the researchers at Merck Frosst set out to determine which PDE4 subtype is mediating the emetic response. The most direct way to do so is to take advantage of genetically engineered mice that lack particular subtypes. However, since mice do not exhibit an emetic response, Robichaud and colleagues had to measure a different response that is thought to correlate with emesis in creatures like us that do vomit. Fortunately, such a surrogate response exists: PDE inhibitors reverse the anesthetic effects of a different class of drugs called alpha2-adrenoceptor agonists, and this is thought to act via the same mechanism as the unwanted side effects.

As Robichaud and colleagues report in the September 30 issue of the Journal of Clinical Investigation, by studying the inhibitors ability to reverse anesthesia in mice that lacked two of the PDE4 subtypes, PDE4B and PDE4D, they could infer that inhibition of PDE4D is what mediates much of the emetic response.

The next step will be the development of selective PDE4 inhibitors that do not interfere with PDE4D function. Such drugs would be predicted not to affect alpha2-adrenoceptor agonist-mediated anesthesia in mice. More importantly, and to vindicate this complicated approach to pre-clinical drug development, they will hopefully maintain the beneficial anti-inflammatory effects in human airways without causing human patients to feel sick and vomit.


Story Source:

The above story is based on materials provided by Journal Of Clinical Investigation. Note: Materials may be edited for content and length.


Cite This Page:

Journal Of Clinical Investigation. "Not All Mammals Vomit -- Or How To Study Emesis In Mice." ScienceDaily. ScienceDaily, 2 October 2002. <www.sciencedaily.com/releases/2002/10/021002065951.htm>.
Journal Of Clinical Investigation. (2002, October 2). Not All Mammals Vomit -- Or How To Study Emesis In Mice. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2002/10/021002065951.htm
Journal Of Clinical Investigation. "Not All Mammals Vomit -- Or How To Study Emesis In Mice." ScienceDaily. www.sciencedaily.com/releases/2002/10/021002065951.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins